

Veermata Jijabai Technological Institute Mumbai

Rachana Sansad's Academy of Architecture Mumbai

Centre for Environment Planning & Technology Ahmedabad

TABLE OF CONTENTS:

1. List of tables	
2.List of Figures	
3.Response to Reviewer's comments	
4. Executive Summary	1
5. Team Introduction	2
6.Project Introduction	5
7.Goals & Strategies	7
8.Design process	9
9.Design Documentation	
Architectural design	11
Energy Performance	13
Input Parameters	15
Water performance	17
Adaptive reuse	18
Embodied Carbon	19
Resilience	20
Engineering and Operations	21
• Affordability	23
 Innovation 	24
Health and Well-being	27
Value Proposition	28
10.References	29
11.Letters of Confirmation	
APPENDIX A - Letters from Educational Institutions	22
APPENDIX B- Project Partner	34
Industry Partner	35

LIST OF TABLES

Table 01. Response to Reviewer Table 02. Building Area Programme Table 03. Program-based list of appliances Table 04. Total Energy Consumption Table 05. Solar Potential Table 06. PV Module Specifications Table 07. Input Stimulations Table 08. Water usage Table 09. Water catchment Table 10. Baseline case Table 11. Proposed case Table 12. Water tank capacity Table 13. Percentage calculation of activities Table 14. Grey water treatment Table 15. Water calculation Table 16. Tabular analysis of proposed consideration Table 17. Tabular analysis of carbon emission Table 18. Comparison of total project cost Table 19. Ventilation rate chart

LIST OF GRAPHS

Graph 01.: Electricity Generation

Graph 02: Comparative Emission Analysis for Wall wrt. Baseline study Graph 03: Comparative Emission Analysis for Roof wrt. Baseline study Graph 04: Comparative Emission Analysis for Floor writ. Baseline study Graph 05: Comparative Emission Analysis for Fenestration wrt. Baseline study Graph 06: Comparative Emission Analysis for structure wrt. Baseline study Graph 07: Overall Comparative Emission Analysis wrt. Baseline study Graph 08: Thermal comfort Chart for entire complex Graph 09: Thermal comfort Chart for Community Hall Graph 10: Thermal Comfort Chart for Cattle Housing Graph 11: Thermal comfort chart on hourly basis

LIST OF FIGURES

- Fig 01. Photos of Team Members
- Fig 02. Photos of Faculty Mentors
- Fig 03. Design Management Process
- Fig 04. Photos of Project Partners
- Fig 05. Context Map
- Fig 06. Goals
- Fig 07. Site Context
- Fig 08. Radiation Analysis
- Fig 09. Form Evolution
- Fig 10. Ventilation Analysis
- Fig 11. Vegetation Planning
- Fig 12. Zoning diagram
- Fig 13. Ventilation for community hall
- Fig 14. Cooling through courtyards
- Fig 15. Designing for the rains
- Fig 16. Bedding layout for night
- Fig 17. Masterplan
- Fig 18. Sections
- Fig 19. Axonometric view of the structure
- Fig 20. View from the entrance
- Fig 21. View of cattle shed and goat pen
- Fig 22. Axonometric view of cattle shed
- Fig 23. View of Community hall (interior)
- Fig 24. View of Community hall (exterior)
- Fig 25. Axonometric view of halls during marriages
- Fig 26. Axonometric view of community hall during health camp
- Fig 27. Community hall storage
- Fig 28. Section showing materials
- Fig 29. Process of bamboo and site allocation
- Fig 30. Process of Adobe bricks
- Fig 31. PV module layout view
- Fig 32. Electrical layout
- Fig 33. Water flowchart
- Fig 34. Water plan
- Fig 35. Toilet section
- Fig 36. Biodigester tank detail
- Fig 37. Bioswales
- Fig 38. Surface runoff collection tank
- Fig 39. Vermi- NADEP exploded isometric view
- Fig 40. Biogas section
- Fig 41. Site placement for Biogas and Vermi NADEP
- Fig 42. Waste management cycle
- Fig 43. Site Topography

- Fig 44. Roof structure
- Fig 45. Extended plinth
- Fig 46. Improving community dynamism
- Fig 47. Vermi- NADEP compost
- Fig 48. South Facade wall
- Fig 49. Window typology
- Fig 50. Farming activities
- Fig 51. Plan showing frame connection with adobe wall
- Fig 52. Isometric View of Window
- Fig 53. Random Rubble coursed masonry wall
- Fig 54. Isometric view of column
- Fig 55. Retaining wall section
- Fig 56. End Wall section
- Fig 57. Floor slab detail
- Fig 58. Community hall truss system
- Fig 59. Community hall axonometric
- Fig 60. Site-based roof truss profile
- Fig 61. Structural details at truss junctions
- Fig 62. Measures to reduce cost
- Fig 63. A closed cycle of materials
- Fig 64. Comparison of footings
- Fig 65. Bamboo reinforcement detail
- Fig 66. Filler slab detail
- Fig 67. Strengthening adobe bricks
- Fig 68. Aquaponics
- Fig 69. Inbuilt seating
- Fig 70. Detail of angular bricks
- Fig 71. Nosed plinths
- Fig 72. Comparison between brick types
- Fig 73. Section through cattle housing
- Fig 74. Windrose diagram
- Fig 75. Section through community hall
- Fig 76. Daylighting Factor
- Fig 77. Daylighting Factor after passive strategies
- Fig 78. Strategies for visual thermal comfort
- Fig 79. Strategies to reduce glare through openings
- Fig 80. Wind simulation diagram
- Fig 81. Self-sustaining centre
- Fig 82. View of the resilience shelter
- Fig 83. Facilities for children
- Fig 84. Facilities for women
- Fig 85. Facilities for animals
- Fig 86. Facilities for senior citizens

EXECUTIVE SUMMARY

Team Nishtha, with 14 passionate students from architecture and engineering backgrounds, has been divided into groups based on their skill sets. Each student with their unique skills completes the team thus, utilizing the team's potential to it's full extent. Brainstorming and group discussions pave the path to creating an amalgamation of innovative ideas. Our project partner, an NGO, works to improve the lifestyle of people living in the Palghar district of Maharashtra.

With various collaborative discussions with the Project Partner, we ventured into Khomarpada as our site for our community resilience shelter. The first steps to the design were several site visits with direct interaction with the end users. Following this, there were a few brainstorming sessions within the team which were further discussed with faculty advisors. With the principle of making the resilience shelter to be a waited community space with various attributes like resilience, water, and energy sufficiency.

With the goal of running the center without any HVAC systems, the design focuses on passive cooling techniques. These techniques govern the zoning and form of structure. The design encourages the use of locally sourced materials with an introduction to using these vernacular materials efficiently for the local labor and villagers. This will redefine their vernacular ways giving the village its own identity. Our Industry partner helped us to ideate on different ways of construction technologies and gave us comprehensive knowledge.

This has helped us in achieving the EPI of **21.285** kWh/m²/year with the help of the **100.07 KWh/day** energy by solar panels, a **41.1%** Overall reduction in Carbon emission, reduction in water demand by **55.25%**.

Our structure helps in providing electricity which is generated by solar panels on site, water which is rain water harvested, fuel generated from biogas plant, crops, grown on site and most importantly a proper shelter. This makes our Community resilience shelter, a self-sufficient and helps in strengthening the village. This also increases the connectivity to the outer modern world.

RESPONSE TO REVIEWER

	Review 1 Evaluation Comment Response							
Energry Performance	Good	There seems to be a fair amount of thought that went into the	We have given energy simulations and simplified the					
		Intersection with the section of the	Ver have given energy simulations and simplified under calculations on pg on 012. Passive design strategies in ventilation have been justified in the health and well-being section pg, no. 31.					
Water Performance	Good	generation, prevaip provide outails of violation. Water calculations are very detailed out however there are a few discrepancies that need to be corrected. The water use calculation should be done separately for the period of resilience and for the period of standard use separately. This is applicable both for the base case as well as the design case. The 135 litres per day baseline is applicable only for the resilience use. Please clarify as to how much savings is being achieved through efficient fixtures, how much grey water is available after treatment and how much of that treated grey water is being used in the buildings, for the landscaping and how much of it is being recharged. Clarify how WC water is being reduced using aertors and why bathing water has been considered to be only 12 litres. Also clarify how savings are being achieved in the kitchens and the toilet. Detail out how rainwater is being done to use the harvested rain water for drinking and cooking. How has irrigation water requirement been reduced to one litre per square metre. Water calculations have to be done in a stepwise manner. Do clarify if the 55.25% savings is fresh water savings or water demand reduction. Explain how the black water sewegor water demand reduction. Explain how the black water sewegor	Separate calculations for water use for standard use and during resilience are given on page no. 17. Grey water treatment, black water during monsoon seasons, fixtures and aerators are briefly explained on pg. no. 16 and 17.					
Embodied Carbon	Good	The calculations for embodied energy are very detailed. However, it is not clear how these reductions have been achieved. Please detail out the alternative materials being proposed and how they have resulted in the reduction of embodied carbon.	We have addressed the selection of materials selected with respect to carbon emissions on page no. 20 . Reductions in embodied carbon by the use of native materials which do not require any harsh processing has also been addresed here.					
Resilient Design	Very Good	The issues related to heavy rains is very well captured and detailed out. there is good understanding of all the related issues during this time. Do elaborate on all the other climate change related risks, their applicability and how the design responds to them.	We have elaborated other climate change risks and explained their applicability in the structure through design intervention. pg no. 22 and 23					
Engineering and Operations	Good	It is very good to see the use of bamboo and wood. Engineering details of the buildings are very well explained. Explain how you plan to improve the life of these building materials in such climatic conditions.	Strategies used to improve the life of building materials are discussed on pg no.25.					
Architectural Design	Fair	Please elaborate on the integrated data-driven approach to architecture design to achieve thermal and visual comfort, and external comfort, reduce solar heat gains, improve ventilation and ensure natural ventilation design is effective in all spaces.	Thermal comfort analysis is covered on page no. 33 (health and well-being). Various ventilation strategies have been covered through graphics on page no. 8.					
Affordability	Good	While costing is fairly detailed out, justification and notes have to be better. Most of the cost differences between baseline and proposed case have not been explained properly.	The needed reasonings are tried to be justified in the excel itself as well as in the report pg no. 27.					
Innovation	Fair	Interesting ideas that need greater thought on constructability and integration. Toilet innovation is not clear. how do bioswales help with decomposition? What happens during the rainy season? how is the wall with angular bricks actually constructed? Are there any examples of bamboo reinforcement for water tanks?	Toilet details are given in-water performance pg no 16. The details of angular bricks is covered on pg no 30. in innovation. The construction detail of bamboo reinforcement for water tanks is given on page no.29.					
Health and Wellbeing	Good	Several studies seem to have been undertaken. however, they have to be analyzed and presented better. Comfort has to be measured against a chosen comfort standard such as IMAC. It should also be checked at hourly time steps and not monthly averages Daylight analysis shows a lot of glare and potential thermal and visual discomfort in several spaces. It should be studied in more detail. Natural ventilation has to be tested in the energy model. what is the basis for taking 30% and how does it help with NV? Please define the indoor and outdoor comfort standards that you wish to meet and show using simulations how you are able to meet them.	Represented graphically the strategies used to reduce the glare or thermal discomfort by achieving a wall window ratio of 1:20 and 1:15 is given on page no. 31. A separate analysis of comfort levels is provided on an hourly basis on page no. 32. The process of reducing visual discomfort due to daylight is given on page no. 33.					
Value Proposition	Good	Very clear communication, Please support the statements with numbers. The statements presently are more qualitative and do not showcase the work done quantitatively.	The qualitative analysi of the work is tried to be justified b depicting community benefits pg no 35.					

RESPONSE TO REVIEWER

	Review 2								
	Evaluation	Comment	Response						
Energy Performance	Excellent	The epi looks good and is quite low.	We have provided detailed breakdown of EPI on page no. 12.						
Water Performance	Excellent	The water reports look very good, good use of graphics.	Additionally we have provided a comparison of baseline and propsed case after usage of aerators pg no.17						
Embodied Carbon	Excellent	Looks good. Please space out the graphs a little so that they are more legible. We have addressed the selection of materi with respect to carbon emissions on page in Reductions in embodied carbon by the use materials which do not require any harsh p also been addressed here.							
Resilient Design	Very Good	Looks good. Please elaborate on resilience strategies that are more design specific.	Design specific resilient strategies have been elaborated responding to other potential risks on site refer pg no. 22 and 23						
Engineering and Operations	Very Good	Please provide layouts for electricity, water and waste management, and structural planning.	Layout for electricity on pg no. 14. Layout for water and waste management on pg no. 15.						
Architectural Design	Excellent	The design looks good and is well presented.	Various ventilation strategies have been covered through graphics on page no. 8.						
Affordabilty	Very Good	Looks good. you can add some graphics for the affordability points you have covered.	A graphic summarizing affordability of the design on pg no. 31						
Innovation	Very Good	The ideas explored look good.	We have explored new ideas in terms of materiality and their construction and techiques like aquaponics pg no. 29 and 30.						
Health and Wellbeing	Excellent	The report looks good. Please add the compliance of comfort hours according to standards.	A separate analysis of comfort levels is provided on an hourly basis on page no. 32.						
Value Proposition	Excellent	The proposition looks good. you can add a summarizing note which captures the idea germ and USP of your project.	The USP's are mentioned on pg no. 35.						

TEAM INTRODUCTION

Team name - NISHTHA

Institution(s) name- Lead Institution- Rachana Sansad's Academy of Architecture Division- Community Resilience Shelter

Team members:

Sandesh Jadhav 3rd Year B.Arch AOA Value Proposition

Shrutika Mahajan 3rd Year B.Arch AOA Health and wellbeing

Anushree Harmalkar 3rd Year B.Arch AOA Research and Documentation

INSTITUTION

ACA ACA Affordability

Pranay Kutal 3rd Year B.Arch AOA Water Performance

Isha Padte 3rd Year B.Arch AOA Health and well-being

Tejas Shinde 3rd Year B.Arch AOA Resilience

Nikita Jagzap 3rd Year B.Arch AOA Arch. Design and

Rahul Bhoye 3rd Year B.Arch AOA Energy Performance

AOA

Arch. Design and Certification

Aarohan Dutta 2nd Year MLA CEPT Environmental Solutions

Aditya Shanbhag Yuvraj Panchal 3rd Year B.Arc 3rd Year B.Tech AOA VJTI Embodied Carbon Structure and Timeline

Fig 01: Photos of team members

LEAD Institution - Rachana Sansad's Academy of Architecture, Mumbai

Rachana Sansad's Academy of Architecture provides B.Arch, B.Voc degree programmes. The students develop the understanding of the importance of developing a multidisciplinary approach while designing any built intervention. This encourages the students to inculcate various allied principles like user health and well-being, affordability as well as maintaining the carbon footprint and adds scope into their design process.

FACULTY TEAM

Ar. Shekoba Sanap (Faculty Lead) :

Architect, academician, and Alumni of AOA, with a master's degree in Urban Design from SPA Delhi. He is also the founder and CEO of studio UD+AC.

Ar. Rohit Shinkre (Faculty Advisor) :

Prof. Rohit Shinkre, DPLG Paris, France, is an award-winning architect, urbanist, and educator. 30+ years of professional global experience in Europe, India, and Africa. He is currently a doctoral candidate at the faculty at Rachana Sansad's Academy of Architecture, ULB, Belgium.

Ar. Amey Ghosalkar (Faculty Advisor) :

Expertise in Architectural design, interiors, and urban projects. Alumni of AOA and SPA Delhi. Previously worked at architects' combine, ARH, and Bentel Associates International and is faculty at Rachana Sansad.

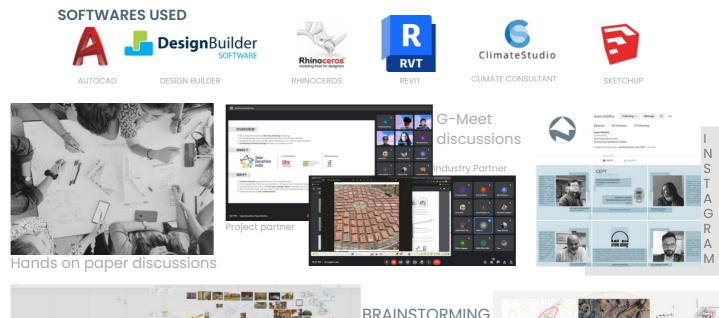
Ar.Minal Gajjar (Faculty Advisor) :

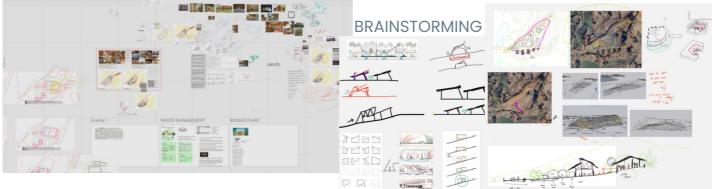
Inspired by the living elements of nature, Landscape Planner Ar. Minal Gajjar, Alumni of L.S. Raheja School of Architecture and is currently a faculty at Rachana Sansad's Academy of Architecture.

Fig 02: Photos of faculty members

INDUSTRY PARTNERS

Ar. Mangesh Jadhav


Founder, Principal Architect, Nirmittee Consultants


Talented and result-oriented project architect who's practices vernacular architecture. Collaboration with him has helped the team to explore various innovative construction techniques and better usage of locally sourced materials.

Agnigarbha Pvt. Ltd.

Agnigarbha Pvt. Ltd. is a Solar Power EPC and is SP 4E-certified MNRE channel partner. Agnigarbha Pvt. Ltd is incorporated under the companies act and is one of the innovative companies in the responsible business category .Designs, buildS and implements solar power generation systems

DESIGN MANAGEMENT PROCESS

SITE VISITS

Discussions with the villagers Fig 03: Design management process

PROJECT BACKGROUND

PROJECT NAME: JEEVIKA

PROJECT PARTNER: Akshar Dhara Foundation

Akshar Dhara Foundation is an NGO that helps to solve socio-economic issues faced by the people of scheduled tribes by promoting and providing education and making them self-sufficient and to develop self-worth.

Despite being in the vicinity of a megacity like Mumbai, places like Dahanu, Palghar, and Vikramgad are still drowning in malnutrition, starvation, illiteracy, etc. Unemployment, poverty, and education are some of the significant issues faced by many localities of Scheduled Tribes. Akshar Dhara Foundation was created to give back to society to serve the less fortunate and bridge the social and economic gaps faced by people in rural settings.

KEY INDIVIDUALS:

Rakesh Sha

Fig 04: Photos of project partners

PROJECT DESCRIPTION

Akshar Dhara Foundation aims to improve the lifestyle of the community of Khomarpada village. The village is located in a remote area of Palghar, which leads to disconnectivity mostly during heavy rainfall. The project focuses on solving the problems related to this disconnection, likely poor income sources, sanitation, and education. It will be forming a network within the village where the community would come together and help each other to enhance their standard of living.

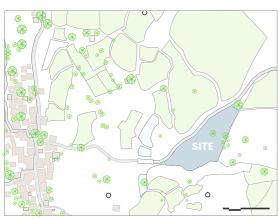


Fig 05: Context Map.

Climate zone - Warm and humid (ECBC) Site area - 6109 sq.m Estimated ground coverage -2554 sq.m Proposed built-up area- 1716 sq.m Stage of Project : Design development and construction documentation stage Profile of Occupants: Villagers of Khomarpada, Medical Professionals, Trainers ,Guests Hours of operation : During resilence 24 hrs

otherwise 9pm -5pm

Purpose of project : Built-own-operate for the community

PROJECT BACKGROUND

SPECIAL REQUIREMENT FROM PROJECT PARTNER

- The intervention should blend with the vernacular context which is handled in a contemporary way.
- The intervention should accommodate both, humans and cattle and protect them from the harsh weather of the region.

Target Capex Cost: 39.7 Million Utility Cost: 0.25 Million Opex cost: 0.7 Million per year Involvement of Project Partner post-completion of construction: Total handover to the village of Khomarpada

Detailed Building Area Programme:

FUNCTION	NO. OF USERS	SIZE OF UNIT (m²)	NO. OF UNITS	TOTAL AREA (m²)	REMARKS	CONDITIONING	FUNCTION DURING DISASTER		
AO Common Room	6	35	1	30	Keeps account of all the activities in the stucture.Conducting village and gram panchanavt meet.	Unconditioned	Used to manage the center and keep a track of the basic needs of rescued people		
				Training C	Centre Wing (TC)	oncontationed			
TC Laboratory	13+2	31	1	31		Unconditioned	Also used as a sleeping space		
TC Equipment Storage	2-3	5	1	5	Centre providing training for various small businesses, menstrual hygiene,		during resilience at night		
Toilet block	40	40	1	40	waste disposal				
					Center Wing (LC)				
LC Library	20	43	1	43	Promoting education by providing				
LC E-Library	6	27	1	27	exposure internet and technology	Unconditioned	-		
					lic spaces				
Community hall with					used as a community hall for activities	Unconditioned	Can be used as Active during		
mezzanine	300	600	1	600	like health drives,weddings,death		resilience as an accommodation		
PS Toilet Block	40	46	2	92	rituals.				
				Gu	est based		•		
Guest house					Used as a accomdation for guests		Can be used as Active during resilience		
spaces	10	46	4	184	visiting the village	Unconditioned	as an accommodation		
Bathroom Block	8	8	4	32					
	1		1		and services				
First-Aid Room	3	23	1	23	Provide health check ups on regular	Unconditioned	caters as an emergency health check room while loss of connectivity		
Common Kitchen	8	45	1	45	basis inside the community .The kitchen serves food for activities like		with the rest of the city and also		
Pantry Storage	2	10	1	10	health drives, weddings, death rituals.		provides emergency food storage		
				Waste a	adaptive reuse				
VermiComposting Pit	2	7	2	14					
Sewage Treatment plant	2		-		Promoting native practices, and thereby also providing an income		The biogas produced during the time		
Nadep	2	7	3	21	making the structure is self suficient .	Unconditioned	of resilence is stored is used to		
Biogas Plant block	2	4+4+28	1	36	Helps for making fuel used for cooking .		generate electicity.		
Diogas Flant Diock	2	414120			ience based				
							Can be used as Active during resilience		
Seedbank	2	11	1	11	Active during resilience	Unconditioned	as an accommodation		
				Catt	le housing				
Health Centre	3	22	1	22					
Cow Shed	85	124	2	248					
Goat Shed	150	141	1	141	Providing regular health check-up	Unconditioned	Active during resilience as a shelter for the cattle providing food and		
Common Hen Unit	500	41	2	82	for animals .	onconditioned	comfort.		
Cattle Food Storage	2	10	2	10					
Fodder Machinery	2	5	1	5					
				Miscella	neous services				
circulation spaces				757					
Overhead tank		45		45					
				Landscap	e and road areas				
Courtyards (b/w admin &									
lib)		22		22					
courtyards (guest house)		110		110					
bamboo plantations		240		240					
landscape		896		896					
roads + pedestrian		1140		1140					
Water collection tank		55		55					
backside area		l		1092					
					ive Calculation				
BUILT UP AREA				1716					
GROUND COVERAGE				2554					
LANDSCAPE				3555					
TOTAL	Sector sector sector	States and states and		6109					

Table 02. Building Area Programme

TOTAL BUILT- UP AREA = 2554 SQ.M

GOALS AND STRATEGIES

	GOALS	SIRAIEGY
Resilience	To make structure resilient and self- sufficient for 60 hours and overcome the loss of connectivity.	Providing on-site generated electricity, proper water management system, and emergency food storage with health care.
Energy Performance	To achieve a net zero energy building with an EPI of 21.285 kWh/ m2.	The solar panels generate 100 KWh/day by mono crystalline solar panel grid and stores the required energy on-site in a hybrid mode.
Water	To reduce, reuse and recharge water by recycling 60% water on site for various activities and strategically planning the usage of harvested water.	To reduce, reuse and recharge water by recycling 60% water on site for drinking, flushing, landscaping and strategically planning the usage of harvested water.
Architectural Design	Familiarity in Design to encourage more participation in communal activities and cater to the needs of various user groups.	Providing learning, health services and gathering spaces. Providing a comfortable shelter to tackle natural calamity.
Health and Well Being	No use of HVAC and minimize the indoor temperature.	Structure oriented at 170° which initiates natural ventilation that aids in maximizing thermal comfort with the numerous courtyards and various other passive design strategies.
Engineering & operations	To make locals sensitive towards the local materials and make them aware about the correct way of using them	Introduced the new construction techniques with locally sourced material. Procuring the material for nearby areas and processing them on site.
Affordability	To manage efficiently and introduce economical and native solutions.	Use of passive design strategies and local labor, material, and construction methods to reduce the operational cost.
Innovation	To use natural materials with vernacular and modern techniques.	Completing the life cycle of the material and recycling it after the deterioration of the structure.
Value Proposition	To provide cost-effective structure by using innovative technologies	To design a self-sustaining structure using existing resources.
Landscape & Ecolog	To facilitate the villagers with a new way of handling waste generated.	Waste treatment plant such as vermicompost and Nadeep are installed. Use of biodigeter, provides fuel for cooking.
Embodied Carbon	To achieve a minimum reduction of 41% carbon emissions in comparison to a localized baseline structural study.	Restricting PCC involvement in construction. Utilizing Adobe bricks reduces the U value.

STRATEGY

Fig 06: Goals

DESIGN DOCUMENTATION

ARCHITECTURAL DESIGN

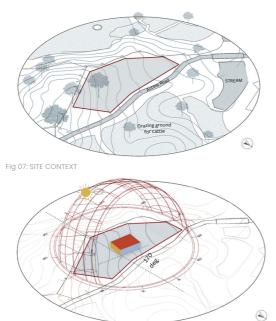


Fig 08: RADIATION ANALYISIS

DESIGN CONCEPT

airflow for better ventilation

Hall Exposed to direct air flow for

better ventilation

Air congregating towards courtyards

Air following the venturi effect

The site, located in the village of Vikramgad, is accessible through a bridge with a road running along the northwest periphery.

The structure is oriented at 170° from the east with a radiation gain of 1180.35 kWh/m2.

Planning of close and open spaces to control the

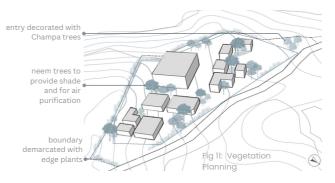

Fig 10: Ventilation

Analysis

Linear access road similar to village typology with cattle and service entry separately

Addition of courtyards and waterscapes for better ventilation

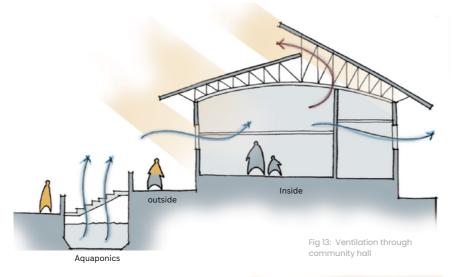
Cattle housing block placed adjacent to grazing groun

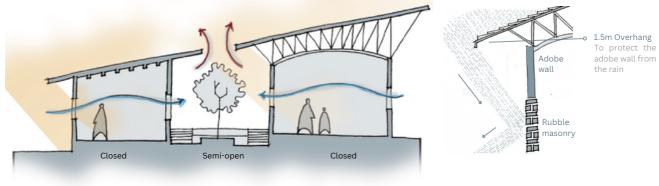


masses according Division of accessibility

_		Service access
-	-	Pedestrian access

Fig 09: Form Evolution


Vegetation planted strategically to block the harsh sunlight from entering and maintain the internal room temperature.


B

VENTILATION

People pass through the bridge over the pond to reduce thermal stress as they transition between indoors and outdoors.

Aquaponics is used to provide cool air by means of evaporative cooling technique.

Fig 14: Cooling through Courtyards

Fig 15: Designing for the rains

DURING RESILIENCE

The structure is designed to shelter the villagers during natural calamity with every block acting to combat them.

Comm- Acts as the main gathering **unity hall** space and place to sleep at night with a proper division of the genders through the opposite elevated platforms to maintain the social conditions.

Fig 16: Bedding layout for night

- **Training** Becomes an extension to the first aid accommodating the sicks and injured individuals
- GuestActs as an isolation wards for severely affected people during any
epidemic.
- **Library** A relaxation place to overcome a stress and pass the time.

LEGEND:

1.ENTRANCE 2.PARKING 3.ADMIN 4.LIBRARY & E-LIBRARY 5.TRAINING CENTER 6. FIRST AID 7. AQUAPONICS POND 8. GUEST HOUSE 9. BACKYARD WITH OPEN KITCHEN 10. COMMUNITY HALL

11. NADEP 12. TOILETS 13. ANIMAL CORRIDOR 14. COW SHED 15. GOAT SHED 16. POULTRY 17. HEALTH CARE FOR ANIMALS 18. BIOGAS PLANT 19. OHT 20. KITCHEN 21. FARMLANDS

SECTION BB'

Fig 18: Section

ACTIVITY MAPPING

Fig 19: Axonometric view of structure

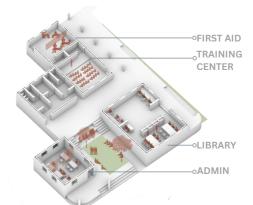
2 CATTLE SHED

3COMMUNITY HALL

health camps.

during the events.

1 LIBRARY

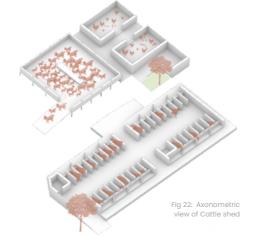

An area for which provides study materials or used as just a place for relaxation to read.

ADMIN

A working place accompanied by a reception area with a courtyard acting as a waiting space.

TRAINING CENTER

A place to conduct workshops or small lectures to expose the villagers to the urban world. This place can also be converted to accommodate small businesses during weekly market days



GUEST HOUSE

The guest house offers a place to accommodate tourists. It has an attic place and also a small dining area at the back

Fig 20: View from the entrance

• Hall provides a space for large social gatherings like village meetings, Marriages, festivals and conducts workshops,

• It is divided into three parts serving a proper segregation

Fig 21: View of Cattle shed and goat pen

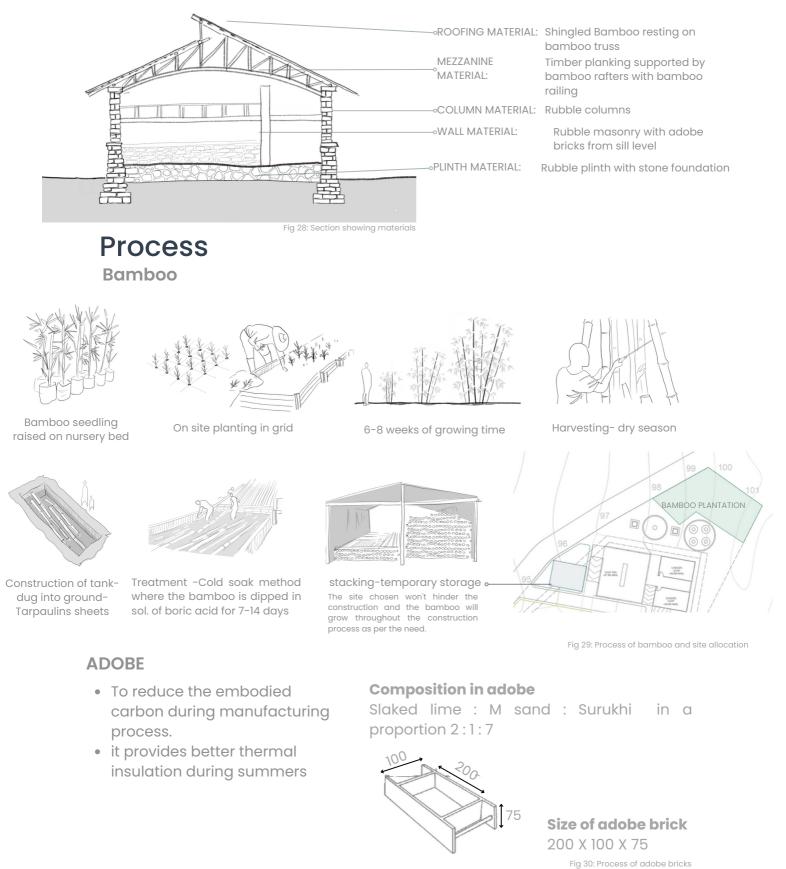
- Accommodates the cattle with a proper segregation of cows, goats and hens and has a provision of a health care.
- . It also has a health care service for the cattle.

Fig 27: Community hall-Storage

The space below the seating stage is utilized for storing emergency items like bedding that will help the community to stay in hall during resilience.

During the marriage, the central part serves as a stage area with the radially guests gathering around and the courtyard becomes a spill-out.

Marriages


HEALTH CAMPS

The elevated platforms are converted to a private booth for check-ups and the central part serves as a public orientation space.

MATERIALS

The architecture being native, the materials are procured and processed from nearby areas or done on-site.

ENERGY PERFORMANCE

Building Program	n Based Data	Appliances in Use								
Block	Total Area (m²)	Lights	Fans	Pump	Cooling	Heating	Computer	Fridge	тv	Projector
Admin Office Block (AO)	40	9	6	0	0	0	3	0	1	0
Training Centre Wing (TC)	35	8	6	0	0	0	0	0	1	0
Learning Center Wing (LC)	100	13	10	0	0	0	7	0	0	0
Public spaces	745	18	18	0	0	0	0	0	0	1
Guest based	130	32	8	0	0	0	0	0	4	0
Health and services	95	43	4	2	0	0	0	2	0	0
Waste adaptive reuse	80	2	0	0	0	0	0	0	0	0
Resilience based	30	97	0	0	0	0	0	0	0	0
Cattle housing	985	66	2	0	0	0	0	0	0	0
Cumulative Calculation	2240	288	54	2	0	0	10	2	6	1

An EPI of 21.285 kWh/m²/year is achieved for the Community Resilience Center with an average yearly energy requirement of 36524.528 kWh/year. Such a low EPI was achieved by elimination of HVAC system which is a major contributor to increased energy demands. This decision was taken based on the context of the site which being rural, and the lack of knowledge and ability to operate and maintain the system proved inefficient which in future considerations could disturb net-zero system. the Additionally, use of LEDs for lighting reduced the energy demand further.

Total Energy Consumption								
Appliances	Rating (kWh)	Usage Hours in a day (h)	Energy Usage in a Day (kWh/day)	Energy Usage in a Year (kWh/y)	Total Appliances	Total Energy Consumptio		
Fan	0.06	14	0.84	306.6	54	n 16556.4		
Pump	0.75	2	1.5	547.5	2	1095		
Computer	0.25	4	1	365	10	3650		
Fridge	0.0264	24	0.6336	231.264	2	462.528		
TV	0.05	3	0.15	54.75	6	328.5		
Projector	0.3	3	0.9	328.5	1	328.5		
LED Bulb	0.012	6	0.072	26.28	245	6438.6		
LED Battens	0.02	6	0.12	43.8	25	1095		
Street Light	0.075	12	0.9	328.5	20	6570		
Cummulative			6.1156	2232.194	365	36524.528		
Energy Required/Day					100.0672	kWh/day		
Energy Required/	Year		kWh/year					
Total BuiltUp Pro	posed		m²					
EPI					21.285	kWh/m²/year		

Table 04 : Total Energy Consumption

Table 03 : Programme based list of appliances

As an alternative to HVAC system, use of passive cooling systems are used like use of Stone and Adobe brick walls, clerestory openings for natural air ventilation, clay tiles for roofing.

ENERGY PERFORMANCE

Month	Solar Radiation (kWh/m²)	Electricity Generation (kWh)
Jan	195.3	3609.9
Feb	193.8	3505.8
Mar	224.5	3987.9
Apr	211.4	3766.2
Мау	197.9	3562.9
Jun	123.6	2280.8
Jul	93.1	1738.5
Aug	101.8	1907
Sep	131.9	2453.5
Oct	182.6	3335.1
Nov	180.3	3307.2
Dec	182.3	3383.6
Yearly	2018.5	36838.4

Electricity Generation (kWh)

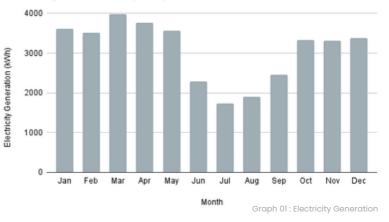


Table 05: Solar Potential

PV Module Specifications	
Manufacturer	Trinasolar
Module Name	Vertex
Peak Output	645 W
Size	2384 x 1303 x 33 mm
Area	3.106 m²
Efficiency	20.80%
No. of Panels	50
Total Area	153.3176 m²
Yearly Average PV Output	36838.6 kWh
Azimuth	190°
Tilt	24°

Table 06: PV Module Specifications

The Solar Array is placed over the Nadep pits which serves the function of adaptive waste reuse. The panels are oriented **190° from North** with a **tilt of 24°** providing maximum solar irradiance.

Ground based fix-mounted PV configuration was selected as rooftop based system were not able to provide the required azimuth angle for maximum efficiency.

The PV Modules which are **50** in numbers are arranged in **4 rows** of **12 panels** placed adjacent to each other with additional 2 on either sides. Panels are placed in a tilted manner such that they form a large continuous surface. The Solar Array is connected to batteries for storage and a inverter for conversion of DC to AC.

Fig 31: PV Module layout- view

Target energy requirement of **36524 kWh/year**, the solar array on average generates **36838 kWh/year**, making the structure net-zero in terms of energy.

LIGHTING LAYOUT

Fig 32: Electrical Layout

ENERGY SIMULATION INPUTS

Input Parameters	Input Parameters Proposed Design Values		Proposed Design Values			
Gener	al	Env	Envelope			
Building Area 1716 sq m		Roof Assembly U value	1.4			
Conditioned Area	0 sqm	Roof Assembly SRI	0.32			
Electricity Rate	7 INR/kWh	Average Wall Assembly U value	0.293 W/m².K			
Natural Gas Rate	0 INR/GJ (BIOGAS USED)	Window to Wall Area Ratio (WWR)	20%			
Building Occupancy Hours	8HRS (from 9am -5pm)	Windows U value	5.894			
Average Occupant Density			0.861			
Internal L	oads	Windows VLT	0.898			
Interior Average Lighting Power Density	2.62 W/m ²	Infiltration Rate	0.5 ach			
List of Lighting Controls	Switch board		The adobe bricks are used for walls with angular facades on the south side. To			
Minimum OA (outside air) Ventilation (Building Average)	17 l/sec.m ²	Describe Exterior Shading Devices	prevent rainwater from destroying the bricks, the lower part (Height: 1m from the plinth) is made of rubble.			

Table 07: Input simulations

WATER PERFORMANCE

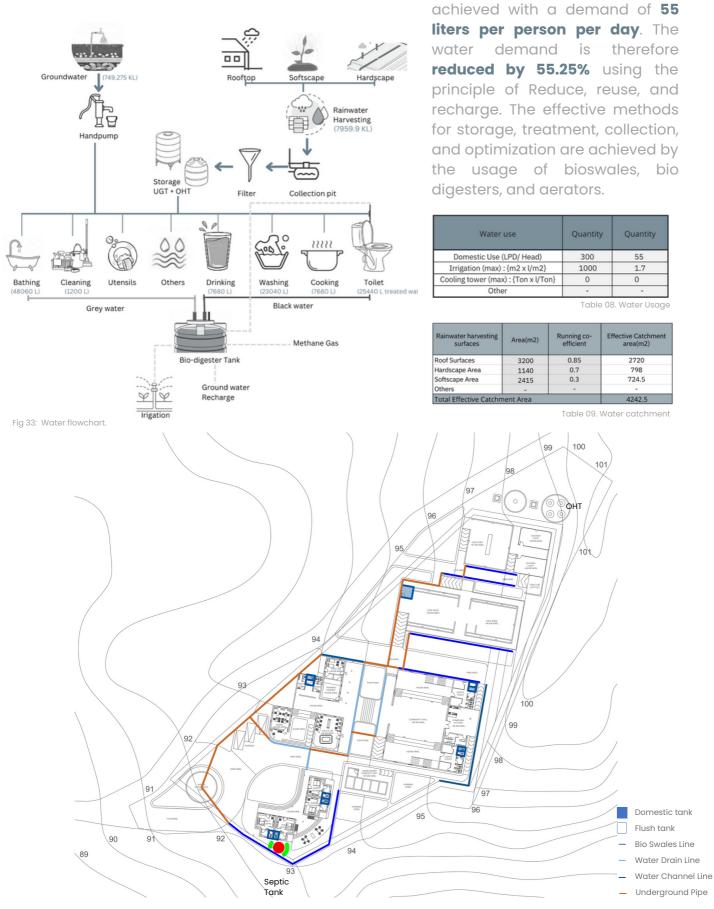
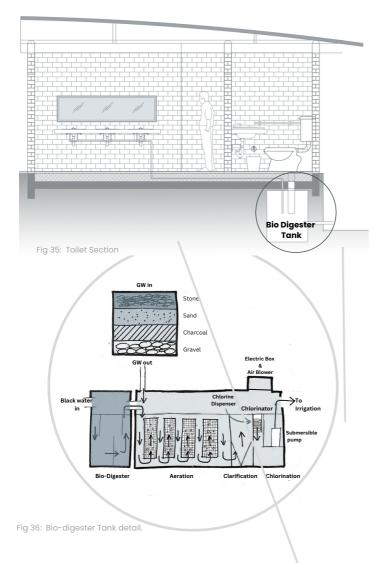



Fig 34: Water and waste management plan.

The net-positive water cycle is

WATER PERFORMANCE

Reuse - Greywater treated to reuse

Recharge -

Bioswales are a type of green infrastructure used for stormwater management. They are shallow channels that are designed to capture, filter, and treat stormwater runoff. The channels are typically filled with vegetation and soil, and sometimes contain engineered components like permeable layers or filters to enhance their stormwater treatment capabilities.In addition, bioswales offer numerous ancillary benefits such as enhancing air quality, reducing urban heat island effects, and enhancing the aesthetic appeal of the surrounding environment.

A biodigester tank is a **closed**, controlled environment in which microorganisms are able to break down organic matter into **biogas** and liquid fertilizer through a process called anaerobic digestion. The organic matter can include a variety of waste products, such as agricultural waste, animal manure, or even human waste. Biodigester tanks are particularly useful in rural areas, where access to centralized sewage treatment facilities is limited. They are also increasingly being used in urban areas, such as schools, hospitals, and apartment buildings, as a sustainable solution for waste management and energy production.

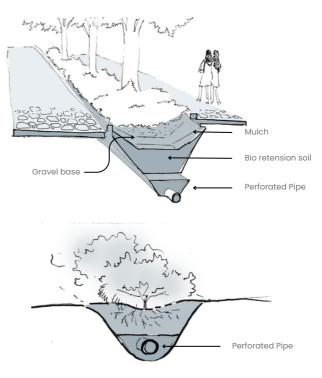


Fig 37: Bio-swales

WATER PERFORMANCE **Recharge** -

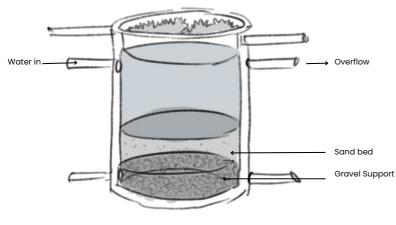


Fig 38: Surface runoff collection tank

Reduce - Flushing water reduced by 50% to from 6 lpf to 3 lpf using an aerator

- By using **Cistern flush tank**(wall mounted) the water get used is reduce to 3LPM from 6LPM.
- Also, 12LPM used from taps in kitchen, bathroom is reduced to 6LPM by means of using Aerators in them

Per Capita Consu	Per Capita Consumption per day			pita Consumption per day Per Capita Consumption per day			
Activities Per	Domestic (lts)				Domestic (lts)	1	
	Period of Standard Use	Period of Resilience		Activities	Period of Standard Use	Period of Resilience	
Wash basin	4L (10%)	2L (6.667%)		Wash basin	1.5L (8.5%)	1L (6.667%)	Aided by using
Drinking	12L (30%)	10L (33.33%)	40 Litres of	Drinking	12L (68.5%)	10L (66.667%)	aerators and
Cooking	2L (5%)	2L (6.667%)	water for	Cooking	2L (11.4%)	2L (13.334%)	reuse of greywater, water
Cleaning	4L (10%)	1L (3.334%)	standard use and reduce to	Cleaning	2L (11.4%)	2L (13.334%)	consumed is reduced to 17.5
Activities	Flushing (lts)	Flushing (lts) 30 litres in time of resililence Activities		Activities	Flushing (lts)		Lts and 15 Lts
WC flushing	12L(30%)	10L(33.33%)	orreenneree	WC flushing	0	0	during Resilience time
Urinal Flushing	6L (15%)	5L (16.667%)		Urinal Flushing	0	0	
	Table 10. Baseline case Table 11. Proposed case						

Sediment filtration is a process of removing suspended solids and other large particles from water. Sediment filters are typically made of a bed of sand, gravel, or other media that has various sizes of pore spaces. When water flows through the filter, the larger particles and sediment get trapped in the filter media, allowing the filtered water to pass through. The effectiveness of the filter depends on the size of the filter media, the water flow rate, and the level of contamination.

Pr im ar y	Secondary	Tertiary			
	Removal of nutrients and contaminants	Final cleaning process			
Filtration	Biological/ physiochemical methods	Removes remaining inorganic compounds , bacteria, microorganisms, parasites			
Removes solids that might clog	Use microbes, sunlight,oxygen	Alum might be used			
up the other treatments	Aerobic process require more energy	Water polishing - usage of UV rays			
	Anerobic process require less energy				

Table 12. Water Tanks capacity

Occupant's Activity	Percent Usage	Quantity	Grey Water	Black water
	%	litres	litres	litres
Drinking	9.09	2	0	2
Cooking	9.09	2	0	2
Flushing	27.27	6	0	6
Bathing	54.54	12	12	0

Table 13. Percentage calculation of activities

								Whitewat	er			Greywa	ter Reuse	Total grey water consumed	Total Water Consumption	Total Black Water Generated	Reduced blackwate
Months	Occupancy	No. of days	Rainfall (mm)	Effective rain (mm)	Harvested rainwater (l)	Drinking (per person 2l)	Cooking	Cleaning (per person 2l)	Bathing (per person 12l)	Washing	Animal drinkin g	Flushing 3 lpf	Irrigation	per month	per month	per month	r per month
	Daily - 30	26				60	60		360	180		180					75
January	Events - 300	5	0	0	0	600	600	100	3600	1800		2000		3380	9497	9497	2238
Jundary	Daily - 30	25				60	60		360	180	1	180	1				75
February	Events - 300	3	0	0	0	600	600	100	3600	1800	8 Cows + 8 Goats+	2000		3380	9497	9497	2238
	Daily - 30	26				60	60		360	180	20 Hens	180	1				75
March	Events - 300	5	0	0	0	600	600	100	3600	1800	250	2000	1	3380	9497	9497	2238
	Daily - 30	25				60	60		360	180	1	180	1		9497	9497	75
April	Events - 300	5	0	0	0	600	600	100	3600	1800		2000		3380	9497	9497	2238
	Daily - 30	26				60	60		360	180]	180			9497	9497	75
May	Events - 300	5	0	0	0	600	600	100	3600	1800		2000		3380	5457	9497	2238
	Events - 300											2000	600 sq.m x	2600	430500	430500	2238
June	Resilience	30	585	580	1566000	600	600	100	3600	1800	8 Cows +		1 litre =		430300	430300	
	Events - 300										8 Goats+	2000	600 litres	2600	444850	444850	2238
July	Resilience	31	1162	1157	3123900	600	600	100	3600	1800	20 Hens				444050	411050	
	Events - 300										3450	2000		2600	444850	444850	2238
August	Resilience	31	710	705	1903500	600	600	100	3600	1800							
	Events - 300											2000		2600	430500	430500	2238
September	Resilience	30	370	365	985500	600	600	100	3600	1800				<u> </u>			
	Daily - 30	26				60	60		360	180	8 Cows +	180			9497	9497	75
October	Events - 300	5	105	100	270000	600 60	600 60	100	3600 360	1800	8 Goats +	2000	-	3380			2238
	Daily - 30	25				600	600		3600	180	20 Hens	180			9497	9497	75
November	Events - 300	5 26	45	40	108000	600	600	100	3600	1800 180	250	2000		3380			2238 75
	Daily - 30	26				600	600		3600	180		2000			9497	9497	2238
	Events - 300	365	0	7956900	0	7680		100	46080	23040	hiogae	2000		3380	102626	102676	2238
TOTAL		305		1220200				1200		23040	biogas	23440		37440	1826676	1826676	2/430

Table 15. Water calculation

ADAPTIVE REUSE

DEALING WITH CATTLE WASTE:

COMPOSTING:

The process of making compost starts after the monsoons when the level of moisture decreases.

The units are constructed with lime crete and bamboo as reinforcement.

Vermicomposting:

- Duration: 60-90 days
- Red worms are used to achieve faster result, pits and kept in shaded area to protect worms form direct sunlight.

Nadep:

- Duration: 90-120 days
- The process is more simple for the villagers to use. The layers are arranged and left to decompose.

Fig 39: Vermi-nadep exploded isometric view

BIO GAS PLANT:

Biogas treats cattle waste to generate fuel which is supplied to kitchen and stored when not in use.

- Total waste generated per day (dung of 40 cows & 75 goats)(B): 40x10kg dung+75x1kg dung= 475kg dung
- Gas consumed by 1 person/day= 300L
- Gas requirement= 300(no. of people)x 300=90,000L
- **Calculating vol. of digester(Vd)=** Retention time(Rt)x Substrate input quantity(Sd)
 - Sd=Bx water= 237.5+475=712.5kg
 - Vd=712.5x3=2137.5 m^3
 - Daily gas production= G= Bx Specific gas yield (Gy)
 - Gy for cow dung and urine= 220m^3xdxkg
 - G= 475x220= 1,04,500L
 - Daily gas generation rate per m^3 digester volume= Gp= G/Vd=104500/2137.5= 48.88 (m^3/d)m^3

Calculating gas holder volume (Vg):

- Vg= G x tx max (max. zero consumption time)
- = 104500x 19= 198550 m^3
- 40% of Vg for storage= 794200 m^3

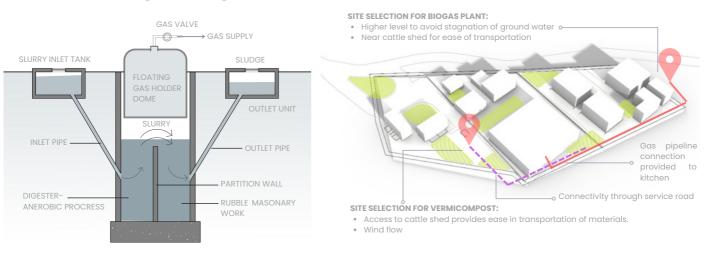
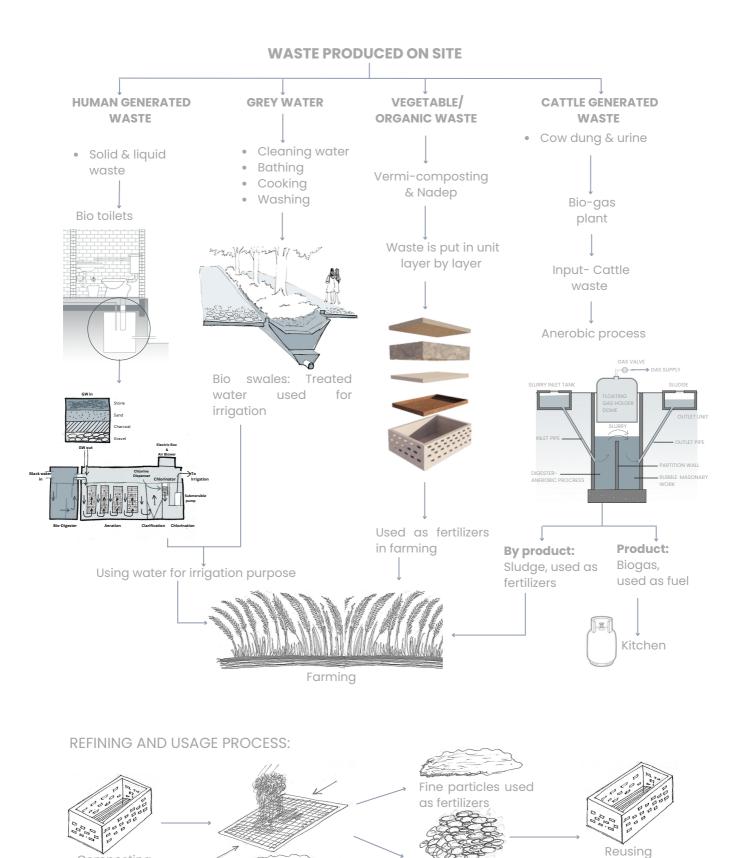



Fig 40: Biogas Section

Fig 41: Site placement for biogas and vermi/nadep

WASTE MANAGEMENT CYCLE:

Report April '23

composting

material

Fig 42: Waste management cycle

Soil and larger

granules left

Composting

Refining

pit

EMBODIED CARBON

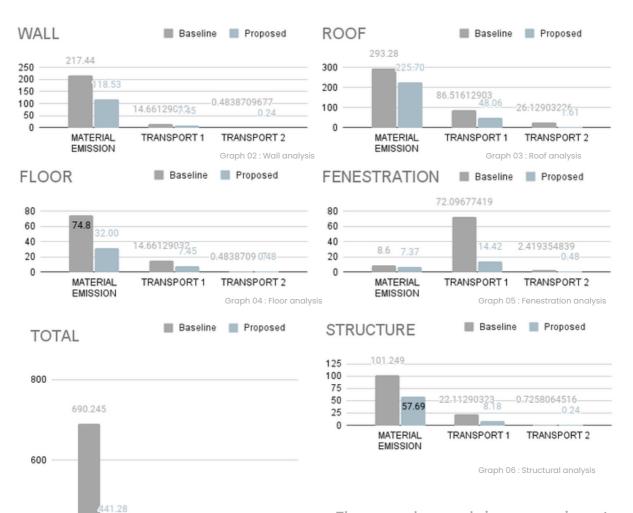
With due consideration to the context, the site is located at a fair distance from the Industrial Centres and urban material markets. This could pose a strain on the transportation based emissions materials.

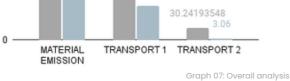
Further, 3 main guidelines were incorporated in regards to material selection and subsequent carbon emission based study. They are as follows,

- Whole building program: Caters to establishing efficient layouts so as to minimise the built extents of the site. The building area program is strictly adhered to so as to achieve this.
- **Material Substitution:** Adobe blocks serve as the primary building block in the design. These are a very green building element. Overall, it becomes imperative to adopt localised admixtures and mortar bases into the finer aspects of design.
- **System Assembly Substitution:** Catering to the issues of transportation again, the project aimed at minimising all possible Concrete based systems. Also, Bamboo acts as a truss building element and substitutes for steel. For cultivating bamboo, necessary on site interventions are put into place.

	Materials	Unit	Quantit	Emissions Factor	Material Emissions	Type of vehicle	No. of trips	Total distance	Total fuel consumed	Transport Emission	Type of vehicle	No. of trips	Total distance	Total fuel consumed	Ernis
DESIGN ST	TANDARDS														
02010110		_				_									
	Adobe	kg	1860	0.01	18.6	Lony	1.0	59.6	24.0	144.2	Lony	1	2	0.8	4
	Local Mortar	kg	500	0.11	55		0.0	0.0	0.0	0.0		0	0	0	0
WALL	Stone	kg	200	0.01	2	Lony	1.0	2.0	0.8	4.8		0	0	0	0
	Plaster	kg	8500	0.27	2295		0.0	0.0	0.0	0.0		0	0	0	0
	Water	1	0.000	0	0		0.0	0.0	0.0	0.0		0	0	0	
			To	tal Material											
			1	missions	118.53	Total T	ransport 1	Emission per fu	inctional unit	7.5	Total 1	fransport 2	Emission per fun	etional unit	0.24
	Bamboo	kg	1450	1.5	2175			0	0.0	0.0		0	0	0	0
	Joinery boilting	kg	7	2.2	15.4	Mini truck	1	59.6	24.0	480.6	Mini truck	1	2	0.81	16.
ROOF	Putins	kg	87	1.5	130.5			0	0.0	0.0		0	0	0.00	0.0
	Half Cut Bamboo		1450	1.5	2175			o l	0.0	0.0		0	0	0.00	0.0
	Polycarbonate														
	sheet	kg	0	3	18	Mini truck	1	59.6	24.0	480.0	Mini truck	1	2	0.81	16.
				tal Material missions	225.635			Emission per fu	and and and	41.1	Tetel		Emission per fun	ational code	1
		-	-	messions	225.695	FOLM I	ramport 1	Crission per fi	inctional unit	40.1	Total	ransport	Emission per fun	coonal unit	1.
	Stone	kg	2500	0.01	25	Lony	1	2	0.81	4.84	Lony	1	2	0.81	4.8
FLOOR	Sol Fill	kg	3000	0	0		0	0	0	0		0	0	0	0
FLOOR	Plastic Bottles	kg	1500	0	0		0	0	0	0		0	0	0	0
	Lime plaster	kg	1430	0.43	614.9	Lony	1	59.6	24.03	144.19	Lony	1	2	0.81	4.8
			Total M	aterial Emissions	31.995	Total	Transport 1	Emission per fu	nctional unit	7.451612903	Total	Transport	2 Emission per fund	tional unit	0.48387
	Wooden frame		20	2.4	48		1	59.6	24.03	144.10			2	0.81	4.9
ENESTRATION				-0.43		Lony		0.00			Lorry	1			
ENESTRATION	Bamboo Jali Shuters	kg kg	20	-0.43	-8.6	Lony	0	59.6	0.00	0.00	Lorry	0	0	0.00	0.0
	Shuters	*0	*2	24		Lony		29/0	24.03				-		4.0
			Total M	aterial Emissions	7.37	Total	Transport 1	Emission per fu	nctional unit	14.41935484	Total	Transport	2 Emission per fund	ctional unit	0.4
	Stone Column	kg	2500	0.01	25	Lony	1	2	0.81	4.84		0	0	0	0
	Rubble Rubble footing	kg	1000	0.01	10	Lorry	1	2	0.81	4.84		0	0	0	0
	Coarsed Quoin														
STRUCTURE	Stone	kg	997	0.056	55.832	Lony	1	2	0.81	4.84	•	0	0	0	0
	Basalt Stone	kg	900	0.056	50.4	Lony	1	2	0.81	4.84		0	0	0	0
				0.27	1012.5	Lorry	1	59.6	24.03	144.19	Lony	1	2	0.81	4.8
	Hard Stone Foundation	kg	3750												

	Materials	Unit	Quantit	Emissions Factor	Material Emissions	Type of vehicle	No. of trips	Total distance	Total fuel consumed	Transport Emission	Type of vehicle	No. of trips	Total distance	Total fuel consumed	Transport Emission
BASELINES	TANDARDS														
						-					-				
	Brick	kg	7260	0.39	2831.4	Lony	1	59.6	24.03	144.19	Lony	1	2	0.81	4.84
	Cement	kg	1480	0.91	1328.6		0	0	0.00	0.00		0	0	0.00	0.00
WALL	Steel reinforcement	kg	20	2.6	52	Lony	1	2	0.81	4.84		0		0.00	0.00
	Lime Plaster	kg	500	0.27	135	Lony	1	59.6	24.03	144.19	Lony	1	2	0.81	4.84
	Stone	kg	200	0.009	1.8	- Cony	0	0	0.00	0.00	- Corry	0	0	0	0
		-													
			Total Ma	terial Emissions	217.44	Total	Transport 1	Emission per fu	nctional unit	14.00129032	Total	Transport	2 Emission per fun	ctional unit	0.483870967
	Steel	kg	1450	2.5	3625	Lony	1	59.6	24.03	144.19	Lony	1	2	0.81	4.84
	Joinery Wireframe		8	2.2	17.6	Mini truck	1	59.6	24.0	480.6	Mini truck		2	0.8	10.1
ROOF	Steel Purlins	kg kg	120	3.5	420	Mini truck	1	59.6	24.0	480.6	Mini truck	1	2	0.8	10.1
	Mangalore tiles	kg	3300	0.51	1983	Lony	1	59.6	24.03	144.10	Lony	1	2	0.81	4.84
	Glazed Glass	kg	100	1.2	120	Mini truck	1	59.6	24.0	480.6	Mini truck	1	59.6	24.0	480.6
			Total Ma	terial Emissions	293.28	Total	Transport 1	Emission per fu	nctional unit	88.51612903	Total	Transport	2 Emission per fun	ctional unit	26 1290 322
	Stone	kg	2500	0.01	25	Lony	1	2	0.81	4.84		0	0	0	0
	Soil Fill	kg	3000	0	0		0	0	0	0		0	0	0	0
FLOOR	PCC bedding RCC	kg	0	0.26	390		0	0 59.6	0 24.03	0 144,10		0	0	0.81	0 4.84
	Tile	kg kg	2300	0.20	1081	Lony	1	59.6	24.03	144.10	Lony	1	2	0.81	4.84
		*9	2000	9.47		Lony		04.0	24.93	144.10			-		
			Total Ma	terial Emissions	74.8	Total	Transport 1	Emission per fu	notional unit	14.66129032	Total	Transport	2 Emission per fun	ctional unit	0.48
	Timber frame	kg	20	2.4	48	Mini truck	1	59.6	24.0	480.6	Mini truck	1	2	0.8	18.1
FENESTRATI ON	Glazed Glass	kg	20	0.8	10	Mini truck	1	59.6	24.0	480.6	Mini truck	1	2	0.8	18.1
ON	Shutters	kg	45	2.4	108	Mini truck	1	59.6	24.0	480.6	Mini truck	1	2	0.8	18.1
			Total Ma	terial Emissions	8.6	Total	Transport 1	Emission per fu	notional unit	72.09677419	Total	Transport	2 Emission per fun	ctional unit	2.41935483
	RCC	kg	2500	0.26	650	Lonv	1	59.6	24.03	144.19	Lonv	1	2	0.81	4.84
	RCC Step	~9				Lony					Lony		-		
	footing	kg	1000	0.26	260	Lony	1	59.6	24.03	144.10	Lony	1	2	0.81	4.84
STRUCTURE	Coarsed Quoin Stone	kg	180	0.058	10.08	Lony	1	2	0.81	4.84		0	0	0	0
	Coarsed Basalt Stone		1650	0.056	92.4	Lony	1	2	0.81	4.84		0	0	0	0
	PCC Bed	kg kg	3750	0.056	1012.5	Lony	1	59.6	24.03	4.84	Lony	1	2	0.81	4.84
			Total Ma	terial Emissions	101 249	Total	Transport 1	Emission ner fu	notional unit	22 11290323	Total	Transport	2 Emission per fund	tional unit	0.72580845


Table 16: Tabular Analysis of Proposed Considerations


EMBODIED CARBON

SUMMARY CALC	ULATION							
		BASE	INE			PROP	OSED	
SYSTEM TYPE	MATERIAL EMISSION (kg-CO2 e)	TRANSPORT 1 (kg-CO2 e)	TRANSPORT 2 (kg-CO2 e)	TOTAL (kg-CO2 e)	MATERIAL EMISSION (kg-CO2 e)	TRANSPORT 1 (kg-CO2 e)	TRANSPORT 2 (kg-CO2 e)	TOTAL (kg-CO2 e)
WALL	217.44	14.66	0.48	232.59	118.53	7.45	0.24	126.22
ROOF	293.28	86.52	26.13	405.93	225.70	48.06	1.61	275.37
FLOOR	74.8	14.66	0.48	89.95	32.00	7.45	0.48	39.93
FENESTRATION	8.6	72.10	2.42	83.12	7.37	14.42	0.48	22.27
STRUCTURE	96.125	22.11	0.73	118.96	57.69	8.18	0.24	66.11
	GRAND TOTAL emissio	ns per functonal u	init (kg-CO2 e)	930.54	GRAND TOTAL emissio	ns per functonal u	init (kg-CO2 e)	529.9

Table 17: Tabular Analysis of Carbon emission

Thus as observed, in comparison to baseline cases an overall 40.1% reduction in all carbon emissions is observed. The Architectural design and engineering work together to devise various means of lowering emissions at all scales of design.

210.0483871

400

200

RESILIENCE

ASSESSMENT OF POTENTIAL RISKS ON SITE:

Flooding:

The village, situated above sea level, is often not prone to flooding despite the region's prevailing high rainfall.

Heat gains:

The built structure is subjected to intense heat during summers which increases the external heat gains, thus rendering the structure to be unfit for accomodation.

Cold temperatures:

The village experience intense winters with the temperature decreasing to as low as 17°C. Absence of thermal insulation in the built structure makes the situation more concerning.

High winds:

The built structure is exposed to high winds from South-West, thus incerasing the wind load on the structure and making it susceptable to damage.

Disjuncture:

The village is disconnected from the outside due to a lack of well-facilitated infrastructure. Also, frequent blackouts are prevalent during rain storms and cyclone situations.

Lack of medical facilities & public awareness:

Due to the unavailability of immediate medical facilities, health issues posed by rodents (infested sites) put human life at imminent risk.

Most of the masses lack awareness about waste disposal mainly plastic. Facilities like toilets are being made available by the government but water availability is lacking. Menstrual hygiene is at stake with no exposure to sanitary napkins.

STRATEGIES TO OVERCOME THE RISKS / EXISTING SOLUTIONS:

Topographical advantage: The sloping topography of

the site situated on a ridge terminates the risk of water logging on the site.

Fig 43: Site topography

Clerestory roofing: Clerestory opening enables well-ventilated spaces reducing cumulative wind

load on the structure.

Extended plinth:

The extended portion of the plinth prevents rodents from infiltrating important spaces.

First Aid & Training Center:

Medical treatment for the injured/ diseased and creating public awareness through campaigns/ lectures provide a better opportunity for community dynamism.

Fig 45:Extended plinth

Fig 46: Improving community dynamism

Fig 44: Roof structure

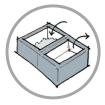


Fig 47: Vermi-NADEP compost

Waste disposal:

Vermi-NADEP composting pits produce manure for the crops effectively reusing the produced waste.

Operable bamboo louvers: Windows with operable mechanism enables controlled air intake during any specific time of the day.

Fig 49: Window typology

Angular bricks on South facade:

It reduces the overall heat gains in summers and heat loss in winters by a marginally satisfying value.

On site farming activities:

This makes the resilence shelter self sustainable in terms of food shortages and keeping a ecomony check during disjuncture.

Fig 48: South façade wall

Fig 50:Farming activities

AUTONOMY OF CRITICAL FUNCTIONS:

Vermi-NADEP produce:

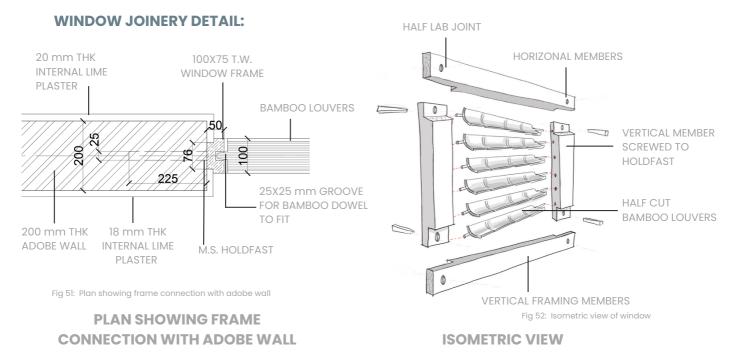
90,000 L of gas is consumed per day when the community center works at full capacity. 475kg of waste (dung) which is sourced from the cattle shed when in full capacity generates 1,04,500 L of gas fulfilling the needs and giving a sufficient backup.

Water facility:

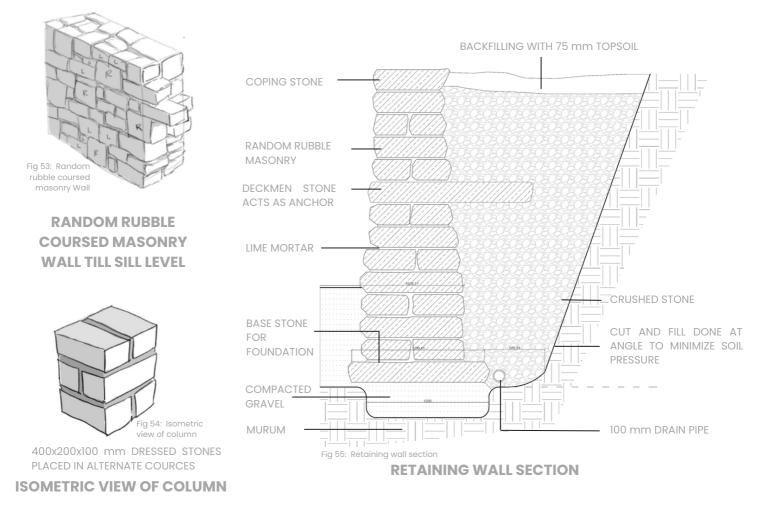
Water storage: 75000 I, Water consumption per day: 56 LPD. During the disaster period, 300 people occupy the shelter, giving 4.5 days of autonomy. During regular times 30 people occupy the shelter giving 45 days of autonomy.

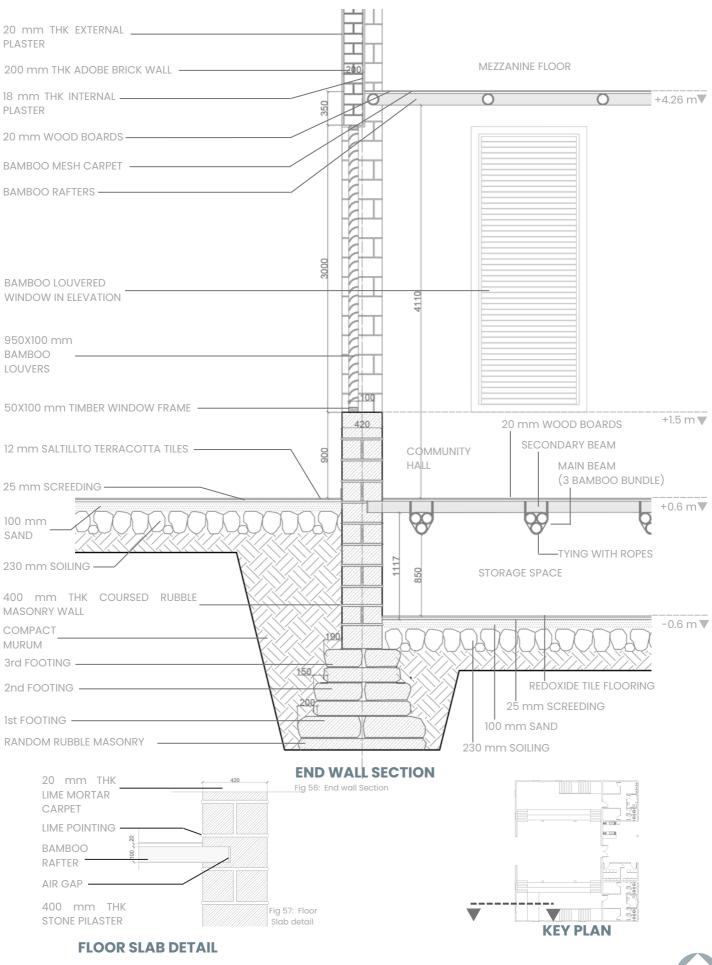
Energy efficiency:

Energy consumption per year is 36542.528 kWh which includes lighting, fans(ventilation) computer, television, and projector equipment.

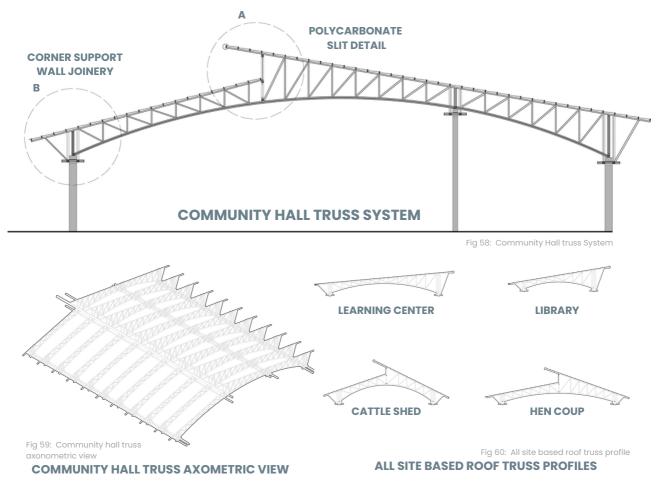

The energy required is generated using Solar PV which is 36838.6 kWh/year from the 50-panel PV grid array on an average. During power outage, the shelter gives 3 days of autonomy.

RESILIENCE ACTION PLAN:

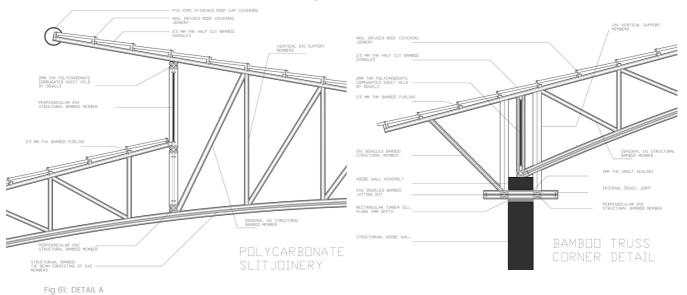

- 1. Relocate villagers and cattle folk to the resilience center.
- 2. Cater to the injured and look after the well-being of villagers and cattle.
- 3. Provide villagers with a safe space in the center for temporary/ long periods of stay before the resilience time period settles down.
- 4. Provide villagers with sufficient food and water supply.
- 5. Conduct communal activities to engage villagers during distress.
- 6. Educate/ train villagers for basic self-care during extended distress periods.


ENGINEERING AND OPERATIONS

RUBBLE MASONARY DETAILS:


ENGINEERING AND OPERATIONS

eam Nishtha | Final Report April '



ENGINEERING AND OPERATIONS

The entire assembly is derived from an explorative process of using Bamboo for the structural requirements. To attain structural strengths, a Bamboo Member is curated wherein one structural member consists of interlocked Bamboo rods all of **5 MM thick** diameter. As such members in various permutations like **2x1** and **2x2** are incorporated through the design.

These members are internally connected by **Bamboo dowels** and member to member connections are achieved by **Nut and Bolts**.

STRUCTURAL DETAILS AT TRUSS JUNCTIONS

AFFORDABILITY

Comparison of total project cost : BASE CASE vs PROPOSED CASE

			Baseline	e Estimate (Project Partner / SOI	R basis)	Proposed Design Estimate			
S.No.	Particulars	Definition	Amount (Million INR)	%	Amount (INR per sqm)	Amount (Million INR)	%	Amount (INR per sqm)	
1	Land	Cost of land purchased or leased by the Project Partner	100	53.60%	43,478	100	72.00%	43,478	
2	Civil Works	Refer Item A, Civil works in Cost of construction worksheet	2.2	1.20%	957	2.6	1.90%	1,130	
3	Internal Works	Refer Item B, Civil works in Cost of construction worksheet	1.44	0.80%	626	1.43	1.00%	622	
4	MEP Services	Refer Item C, Civil works in Cost of construction worksheet	40.17	21.50%	17,466	0	0.00%	-	
5	Equipment & Furnishing	Refer Item D, Civil works in Cost of construction worksheet	0.01	0.00%	4	0.01	0.00%	4	
6	Landscape & Site Development	Refer Item E, Civil works in Cost of construction worksheet	0.2	0.10%	88	0	0.00%	1	
7	Contingency	Amount added to the total estimate for incidental and miscellaneous expenses.	2.2	1.20%	957	3.21	2.30%	1,395	
	TOTAL HARD COST		146.2	78%	63,576	107.3	77%	46,631	
8	Pre Operative Expenses	Cost of Permits, Licenses, Market research, Advertising etc	10	5.40%	4,348	10	5.40%	4,348	
9	Consultants	Consultant fees on a typical Project	10	5.40%	4,348	10	5.40%	4,348	
10	Interest During Construction	Interest paid on loans related to the project during construction	20.25	10.90%	8,806	11.72	6.30%	5,097	
	TOTAL SOFT COST		40.3	22%	17,502	31.7	17%	13,792	
	TOTAL PROJECT COST		186.5	100%	81,078	139	100%	60,423	

Table 18: Comparison of Total project cost

Justifications

- 1. The cost of landscaping is reduced significantly by the usage of native species which require no cost for plantation.
- 2.Built-in furniture reduces the capital cost of furnishing and increases durability reducing maintenance costs.
- 3.Contingency cost is estimated to be greater because of the usage of materials like bamboo which require appropriate sizing and material handling.
- 4. Charges for MEP services are significantly reduced by the use of passive and native techniques in architecture.

Design strategies

- The proposed cost estimate is substantially decreased due to use of local materials **reducing the transportation cost**.
- Right-sizing of materials to **reduce material wastage** and any opex costs for refurbishing the materials ISHRAE standards.
- labor cost is reduced as the **community itself is employed** in the construction.
- The landscape is such planned that only native trees are planted which **don't require special maintenance** and also **aid in reusing water** several times with biological treatments.
- Passive systems of ventilation, and shading, are devices that increase the capex cost but **reduce the recurring opex cost**.
- The community hall modifies itself to create an **economy-generating** marketplace.

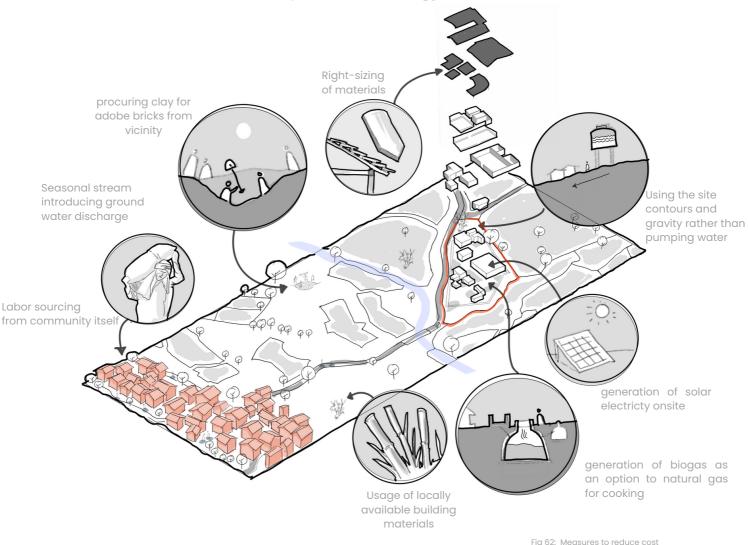
AFFORDABILITY

Energy Interventions

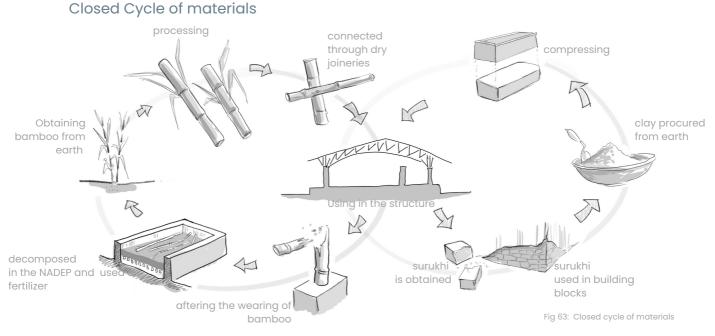
• Independent Grid - Solar PV Panels save opex costs of electricity bills with a **payback period of 7.5 year**s

• Optimized fenestrations inducing daylight **reduces the need for electrical lighting** along the operational hours

• LED Lighting -Compared to incandescent bulbs and CFLs, LEDs are energy efficient, have lesser carbon footprints, and also **reduce our energy demand** which reduces the electricity bills.

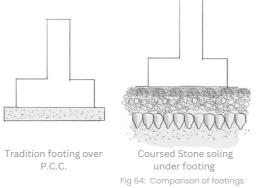

•Natural ventilation provides no room for discomfort and thus reduces **the load on HVAC systems to zero.**

Water management


• The structure can sustain the harvested rainwater all throughout the year rainwater contributes to the **reduction of reliance on groundwater** and has the potential to save a significant amount of water per year.

• Water- Use of efficient techniques, to **reduce water demand**; **reducing overhead tank sizes** by reusing grey water.

• Tank is placed at a higher level to use the contour and gravity to bring water to the desired function and thereby **reduce the energy demand**.



INNOVATION

The materials obey a closed cycle. The basic principle here is to give back what we take from mother earth or re-usage of material on the disintegration of the structure.

Achieving TRIVIAL STEEL NO CONCRETE

Stone as an alternative to P.C.C

Filler slab for OHT tanks

- Slab of the OHT will be subjected to forces exerted by water. Hence filler slab is used to strengthen the slab and reduce its dead load.
- Mangalore tiles are used as fillers.

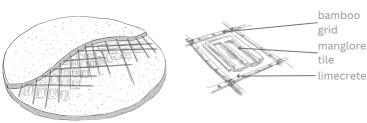


Fig 66: Filler slab detail

Bamboo as a reinforcement in limecrete

Half slit bamboo

limecrete

flattened bamboo for

stiffening

Providing strength to Adobe bricks

- Slaked lime : M sand : Surukhi in a proportion 2:1:7
- Slaked lime provides waterproofing and binding
- M Sand reduces voids and bleeding
- Surukhi provides hydrualicity and strength

sand + straw

compaction of sand, clay, lime sludge

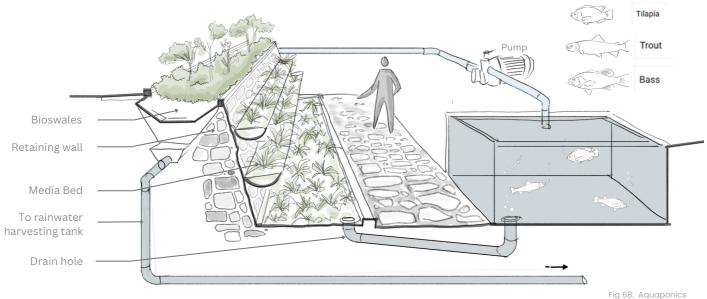

compresssion of blocks

Fig 67: Strengthening Adobe bricks

Fig 65: Bamboo reinforcement detail

INNOVATION

Aquaponics

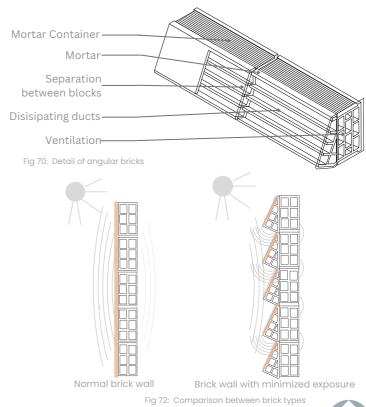
An indigenous system in of aquaculture in which the nitrogenous waste produced by farm fishes like Tilapia, Trout, Bass supply nutrients to plants grown hydroponically, which in turn purify the water.

- automatic recirculating system
- does not require much monitoring or measuring
- Economy generation through vegetation like tomatoes, lettuce, spinach

INBUILT FURNITURE

Fig 69: Inbuilt seating

The structure is such designed that the built itself carves out spaces like furniture.


REDESIGNING THE PLINTH

The plinth is designed with a protruding nosing to prevent rodents from entering inside .

THERMAL HEAT REDUCTION

The south facade is shaded by angular bricks decreasing the surface area exposed to sun, reducing heat transfer.

HEALTH AND WELL - BEING

Khomarpada is located in Palghar which lies in the warm and humid climatic zone. We tried to provide maximum thermal comfort by passive means and reduce the load on mechanical equipment.

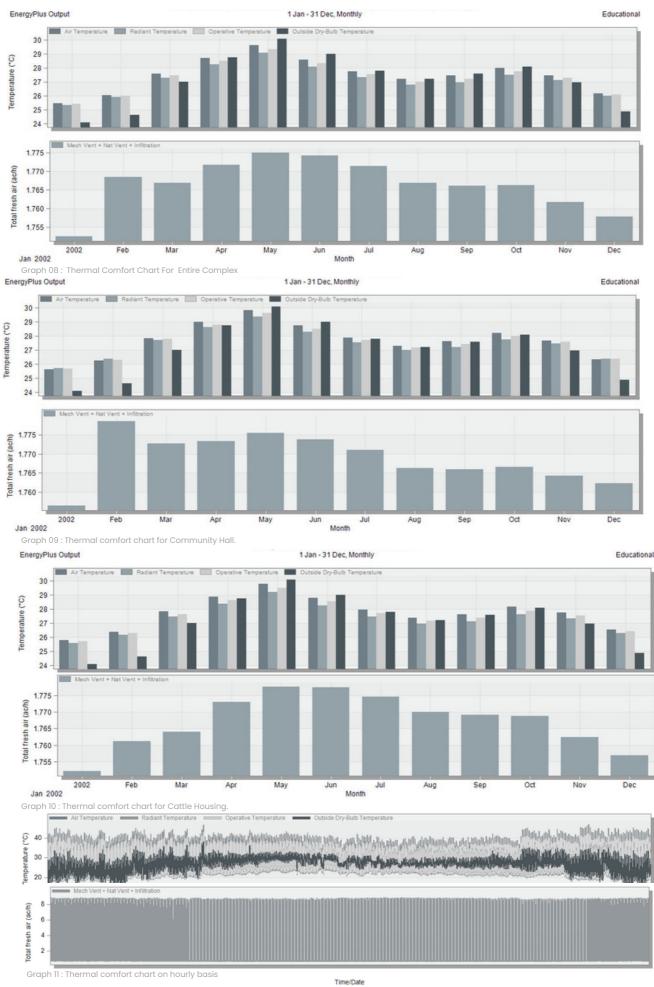
THERMAL COMFORT AND HEAT GAIN

The entire complex is placed at an axis of 170 ° to minimize the heat gain and maximize thermal comfort. The windows for areas which will be used for maximum time throughout the day are placed in the North and North - East direction. The courtyard shared by each space provides cross ventilation.

the Analysis, it is observed that 170° from east is the most appropriate orientation about 20.92 % wind flows from that direction

The cattle housing is designed and placed in a way to allow maximum natural light and minimize heat gain due to surrounding trees.

Fig 75: Section through Community Hall.


VENTILATION RATE

The wall window ratio has been taken as 1:20 to bring down the internal temperature. We have provided a terraced landscape which cools the incoming wind, and further, bamboo blinds which reduce the heat coming in. the southern facade is insulated to heat by reducing the WWR to 1:15 or with no openings in some blocks .The window placed on opposite walls facilitates natural ventilation, which is aided by fans and this brings the further indoor temperature further down. Clerestory openings are provided for Cross ventilation. According to the number of occupants in respective areas, the ventilation rate is calculated following the standards from NBC and ASHRAE.

Space type	No. of occupant	Rp (I/s.person)	Floor Area (m2)	Ra (l/s.m2)	Ventilation rate (I/s)
ADMIN	6	3.8	30	0.3	31.8
LEARNING CENTER, LIBRARY	20	5	70	0.6	142
GUEST HOUSING	10	2.5	216	0.3	89.8
TRAINING CENTER	18	3.8	35	0.3	78.9
COMMUNITY HALL	300	3.8	692	0.6	1555.2
HEALTHCARE HUMANS	3	2.5	23	0.3	14.4
HEALTHCARE ANIMALS	7	3.8	30	0.9	53.6
ANIMAL SHELTER	735	3.8	500	0.9	3243

HEALTH AND WELL - BEING

HEALTH AND WELL - BEING

The wall is made with stone till the sill level and the rest of the wall is made of adobe which help in maintain a temperature difference of 5-10 ° between outdoor(35°) and indoors (30°) using only natural ventilation, it can be further reduced to indoors (25 ° - comfortable indoor temperature) using mechanical ventilation (fans).

DAYLIGHT FACTOR Fig 76: Day lighting facto

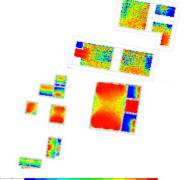


Fig 77: Do phting factor after use of passive techniques

STRATEGIES FOR VISUAL THERMAL COMFORT:

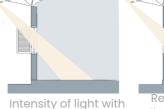
Intensity of light reduced du plant cover, making the air around more cooler due to evaporative cooling

through the courtyard reduces the glare and keeps the structure overall cool.

Strategies for visual Thermal comfor Fia 78:

The clerestory openings brings in required light and takes away the hot air in the structure

STRATEGIES TO REDUCE THE GLARE THROUGH OPENINGS:


light due to 1:20 WWR

without passive strategies

MILITZ

open window

TITITZ

Reduced intensity of light due to louvered window

WIND SIMULATION

The wind simulation demonstrates how the windows, as well as their size and placement, contribute to increased ventilation within the modules. Thus, using passive technologies and orienting the building maximum wind flows through the clusters. The design and planning strategies increase the number of thermal comfort hours via the use of strategies falling under various categories:

Fig 78: Strategies to reduce glare through openings

Fig 80: Wind simulation diagram

VALUE PROPOSITION

Design:

- Redefining resilience
- Water , energy, and biogas cycle net positive
- Increasing connectivity
- Flexible community space
- Resilience for 300 people with efficient water availability of 4-5 days
- Natural invaders we overcome them by raising the plinth of structure
- Self-sustaining community resilience shelter that caters to the need of community and cattle.
- The design stands as a tourism for outsiders to visit as well as homely to villagers and animals

Built:

- Vernacular material stabilizes using modern technique
- Trusses timber + manglore tiles
- Natural mud using with rice husk forming abobe bricks which stabilizes the structure where rice husk does the role of reinforcement.

Operate:

- High Capex, but low Opex
- Few operation things to be carried out after structure being build including cleaning, basic treatment and landscape.

Pricing:

• The base cost is 81,078 INR per. sq.m and the estimated comes out to 60,423 INR per. sq.m

aspects that we applied to reduce our pricing,

- Use of local material
- Use of local labor
- Integration of solar panels in design has increased the Capex cost
- Reduced the use of pumps by placing the oht at high position on site.

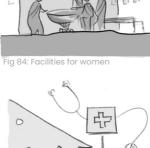
VALUE PROPOSITION

Community Benefits:

Fig 82: View of the resilience center

- The community is involved in the building process thus providing them with **employment facilities** and **exposure to new techniques** using their native materials.
- The community gets **ownership of the center** as they can manage the centre build for them ,by them.
- With functions which cater pre-disaster drills, during resilience shelter, and post resilience assistance, and various other lifestyle functions which makes the operation of the community centre reliable.




Fig 83: Facilities for children

Children & Youth:

1.new apertures and exposure to education and technologies2.safe area for play and rest

1.safe space for

5**C** Fig 84: Fo

Fia 86: Facilities for senior citizens

Women:

1.female hygiene awareness 2.small business

job openings

Senior citizens:

1.safe place for recreation2.access to medical camp

ANT LONG

Fig 85: Facilities for animals

2.health checkups

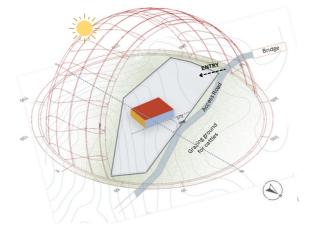
Animal:

shelter

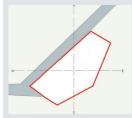
USP's:

- Built by the community for the community using the techniques of native.
- Caters to the well-being of the community makes the village feel like an extended family as well as opens new opportunities for employment.
- During a disaster, a backup of 60 hours of food, water, energy, and security maximizes the comfort of the community and its cattle.
- Overall it is also on updradation in lifestyle for the community.

REFERENCES:


- Surface water quality criteria for different uses, Bureau of Indian Standards, 1982. https://sccImines.com/env/DOCS/Surface%20Water%20Standards.pdf
- Water Quality and Standards. https://vikaspedia.in/energy/policysupport/environment-1/ water/water-quality-and-standards
- Total net zero water: Best management practices for decentralized sourcing and treatment. https://living-future.org/wpcontent/uploads/2016/11/Toward_NetZero_Water.pdf
- https://energypedia.info/wiki/Sizing_of_the_Biogas_Plant#:~:text=The%20ratio %20Vd%20%C3%B7%20Vg,6%3A1%20occuring%20most%20frequently
- https://inhabitat.com/innovative-heat-dispersing-clay-bricks-help-keephomes-naturally-cool/bloque-termodisipador-by-sumart-13/
- https://energypedia.info/wiki/Cooking_with_Biogas

DETAILED BUILDING AREA PROGRAM


FUNCTION	NO. OF USERS	SIZE OF UNIT (m²)	NO. OF UNITS	. OF UNITS (m²) REMARKS (m²)		CONDITIONING	FUNCTION DURING DISASTER							
AO Common Room	6	35	1	30	Keeps account of all the actvities in the stucture.Conducting village and gram panchanayt meet.	Unconditioned	Used to manage the center and keep a track of the basic needs of rescued people							
				Training C	Centre Wing (TC)	onconducined	added of the busic freeds of resource people							
TC Laboratory	13+2	31	1	31	Centre providing training for various	Also used as a sleeping space								
TC Equipment Storage	2-3	5	1	5	small businesses, menstrual hygiene,	Unconditioned	during resilience at night							
Toilet block	40	40	1	40	waste disposal									
					Center Wing (LC)									
LC Library	20	43	1	43	Promoting education by providing									
LC E-Library	6	27	1	27	exposure internet and technology	Unconditioned								
	Public spaces													
Community hall with					used as a community hall for activities	Unconditioned	Can be used as Active during							
mezzanine	300	600	1	600	like health drives,weddings,death		resilience as an accommodation							
PS Toilet Block	40	46	2	92	rituals.									
				Gu	est based									
Guest house					Used as a accomdation for guests		Can be used as Active during resilience							
spaces	10	46	4	184	visiting the village	Unconditioned	as an accommodation							
Bathroom Block	8	8	4	32										
			1		and services									
First-Aid Room	3	23	1	23	Provide health check ups on regular	Unconditioned	caters as an emergency health check room while loss of connectivity							
Common Kitchen	8	45	1	45	basis inside the community .The kitchen serves food for activities like		with the rest of the city and also							
Pantry Storage	2	10	1	10	health drives, weddings, death rituals.		provides emergency food storage							
				Waste a	Idaptive reuse									
VermiComposting Pit	2	7	2	14										
Sewage Treatment plant	2		-		Promoting native practices, and thereby also providing an income		The biogas produced during the time							
Nadep	2	7	3	21	making the structure is self suficient .	Unconditioned	of resilence is stored is used to							
Biogas Plant block	2	4+4+28	1	36	Helps for making fuel used for cooking .		generate electicity.							
Diogas Flant Diock	2	414120	1		ience based									
	1						Cap he used as Active during resilience							
Seedbank	2	11	1	11	Active during resilience	Unconditioned	Can be used as Active during resilience as an accommodation							
				Catt	le housing									
Health Centre	3	22	1	22										
Cow Shed	85	124	2	248										
Goat Shed	150	141	1	141	Providing regular health check-up		Active during resilience as a shelter							
Common Hen Unit	500	41	2	82	for animals .	Unconditioned	for the cattle providing food and							
Cattle Food Storage	2	10	2	10			comfort.							
Fodder Machinery	2	5	1	5										
					neous services									
circulation spaces				757										
Overhead tank		45		45										
	1			Landscap	e and road areas									
Courtyards (b/w admin &														
lib)		22		22										
courtyards (guest house)		110		110										
bamboo plantations		240		240										
landscape	896 896													
roads + pedestrian		1140		1140										
Water collection tank		55		55										
backside area				1092										
				Cumulat	ive Calculation									
BUILT UP AREA				1716										
GROUND COVERAGE				2554										
LANDSCAPE				3555										
TOTAL				6109										

Climate zone – Warm and humid (ECBC) Site area – 6109 sq.m Estimated ground coverage –2554 sq.m Proposed built-up area- 1716 sq.m


ARCHITECTURAL DRAWINGS

The site, located in the village of Vikramgad. The structure is oriented at 170° from the east with a radiation gain of 1180.35 kWh/m2.

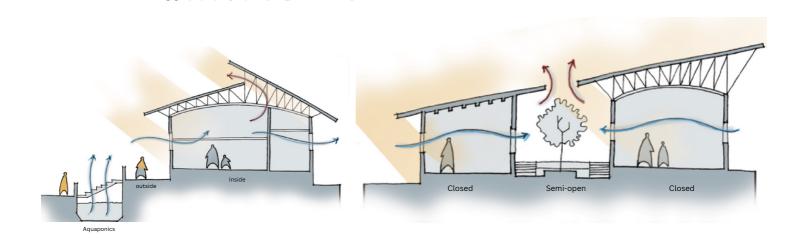
PRELIMINARY DESIGN GRID

Site orientation- NE-SW

Hall Exposed to direct air flow for better ventilation

Air congregating

Air following the venturi effect


towards courtyards

Linear access road similar to village typology with cattle and service entry separately

Addition of courtyards and waterscapes for better ventilation

s Cattle housing block placed adjacent to grazing ground

Passive cooling techniques are used to keep the center well-ventilated and maintain the standard comfort level temperature.

For passive cooling, the truss design allows the hot air to pass through it, cooling the internal spaces.

Evaporative cooling, courtyards are other ways of passive cooling techniques used.

LEGEND:

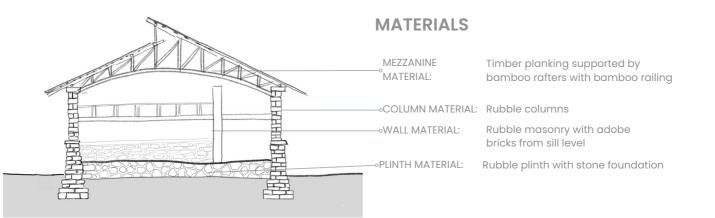
- 1.ENTRANCE
- 2.PARKING
- 3. ADMIN
- 4.LIBRARY & E-LIBRARY 5.TRAINING CENTER

- 6. FIRST AID 7. AQUPONICS POND 8. GUEST HOUSE 9. BACKYARD WITH OPEN KITCHEN 10. COMMUNITY HALL

11. NADEP 12. TOILETS 13. ANIMAL CORRIDOR 14. COW SHED 15. GOAT SHED

16. POULTRY 17. HEALTH CARE FOR ANIMALS 18. BIOGAS PLANT 19. OHT 20. KITCHEN

SECTION AA'



SECTION BB'

Fig 19: Section

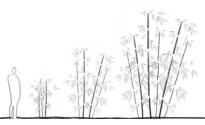
TYPE OF TREE	NEEM	СНАМРА	СНІСКОО	LEMON	TURMERIC	KURDU
REASON	Shading and air purification	Light shading and fragrant tree	Shading	Medicinal plant and kitchen plant	Medicinal plant and kitchen plant	Flowering shrub
SPACE	Community hall , animal shelter , entrance and near opening	Library, near Guest housing,	Community hall , animal shelter , entrance and near opening	Kitchen garden	Kitchen garden	Open spill out spaces -library

Team Nishtha | Final Re

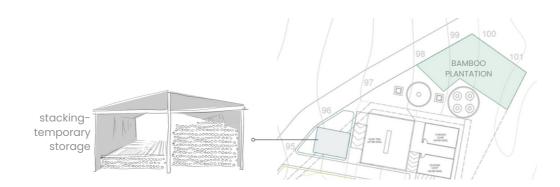
Process

Bamboo

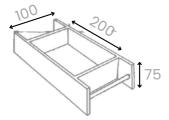
Bamboo seedling raised on nursery bed


Harvesting- dry season

On site planting in grid


Construction of tank- dug into ground-Tarpaulins sheets

6-8 weeks of growing time

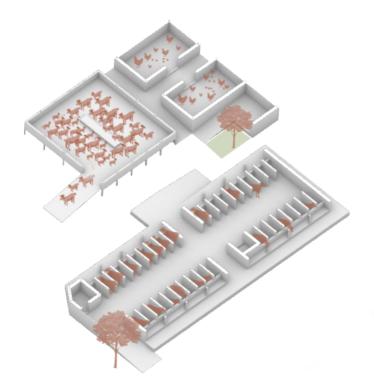


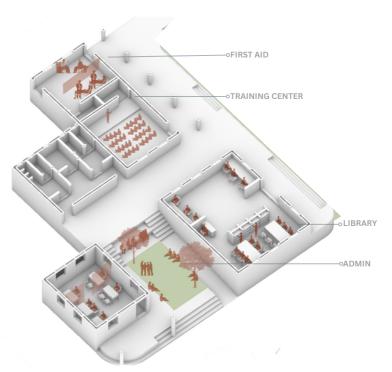
Treatment -Cold soak method where the bamboo is dipped in sol. of boric acid for 7-14 days

ADOBE

Adobe bricks are used to reduce the embodied carbon and better thermal insulation

Size of adobe brick 200 X 100 X 75


Composition in adobe


Slaked lime : M sand : Surukhi in a proportion 2:1:7

- Slaked lime provides waterproofing and binding
- M Sand reduces voids and bleeding
- Surukhi provides hydraulicity and strength

ACTIVITY MAPPING

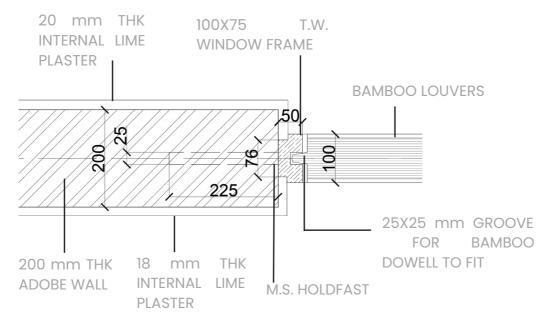
Accommodates the cattle, Goats, and Hen with proper segregation and health care.

CATTLE SHED

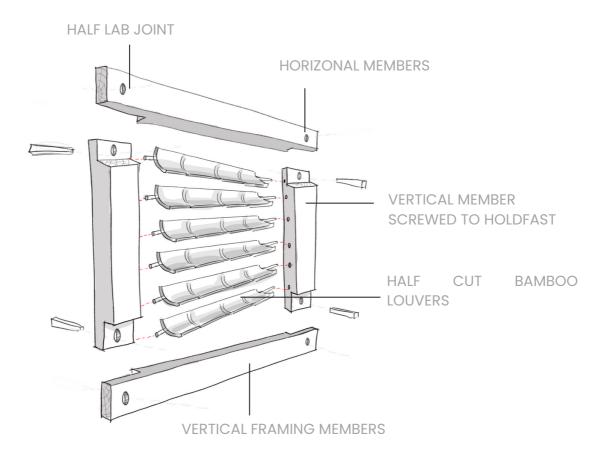
TRAINING CENTER A place to conduct workshops or small lectures to expose the villagers to the urban worlds

COMMUNITY HALL

Hall provides a space for large social gatherings like village meetings, Marriages, festivals, workshops etc.

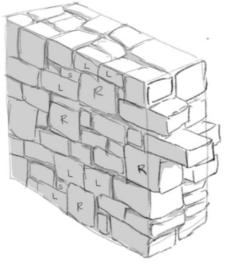

DURING MARRIAGE The central part serves as a stage area with the radially guests gathering around it

DURING HEALTH CAMPS , The elevated platforms are converted to become a private booth for check-ups and the central part serves as a public orientation space.

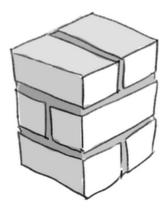


ENGINEERING AND OPERATIONS

WINDOW JOINERY DETAIL:

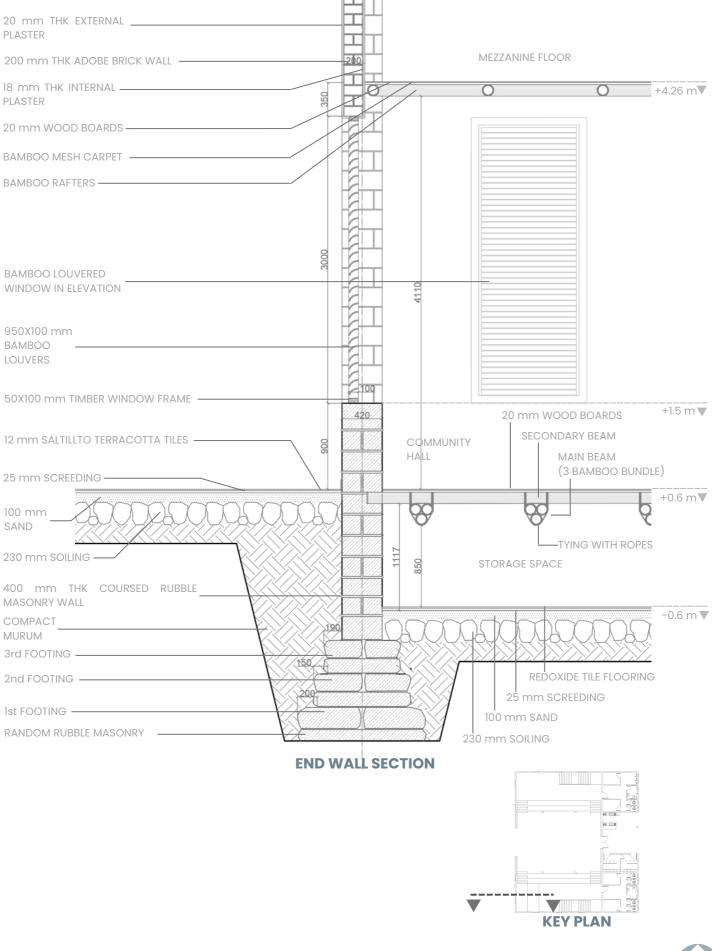

PLAN SHOWING FRAME CONNECTION WITH ADOBE WALL

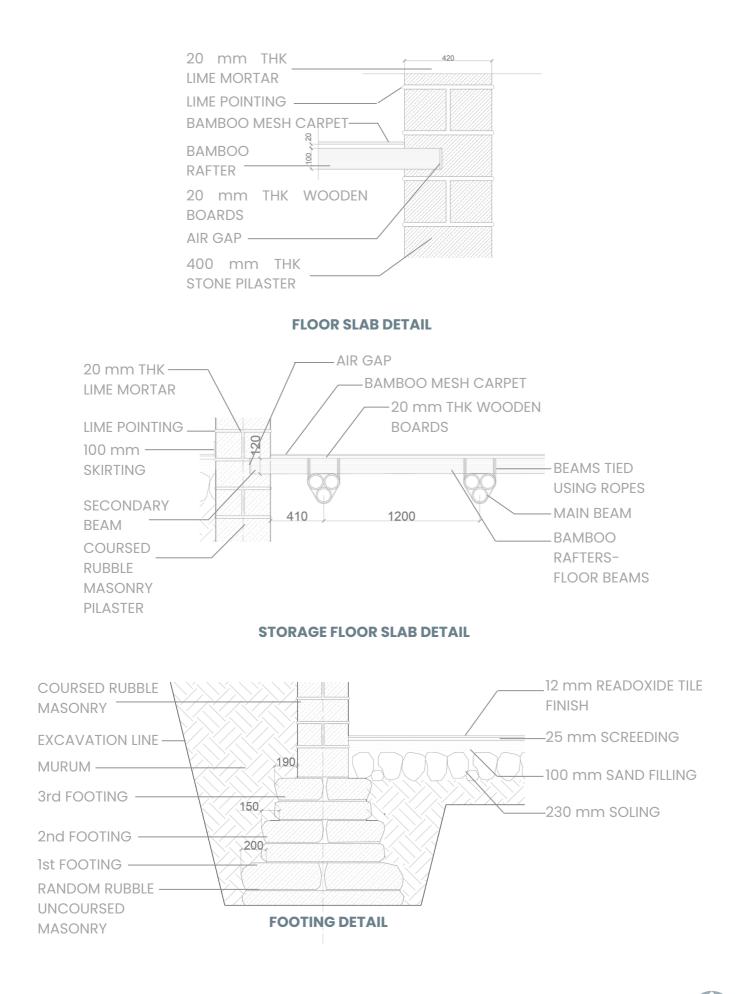
ISOMETRIC VIEW

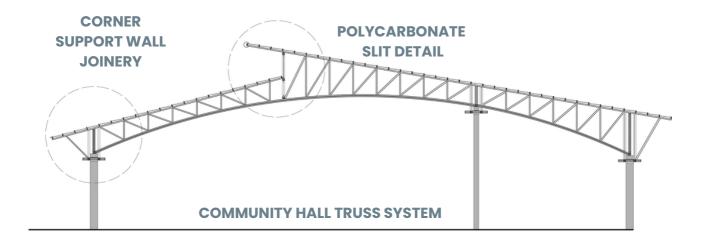

ENGINEERING AND OPERATIONS

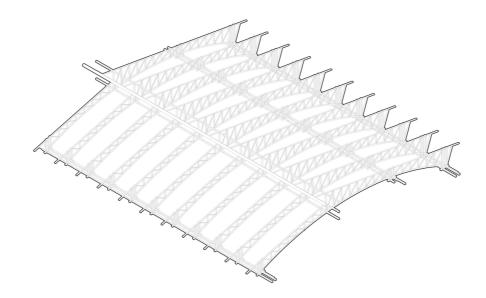
RUBBLE MASONARY DETAILS:

RANDOM RUBBLE COURSED MASONRY


STONE MASONRY TILL SILL LEVEL

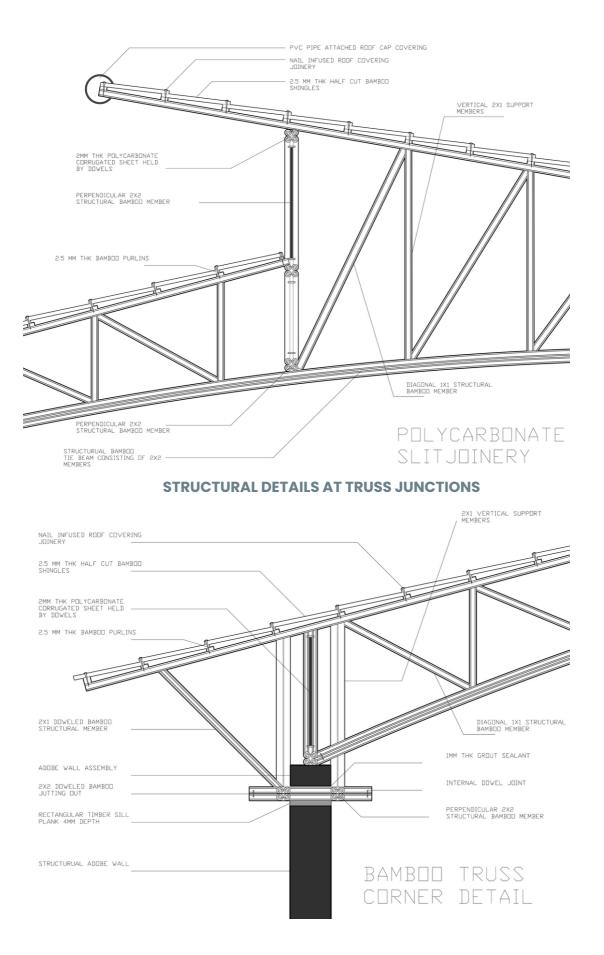

400x200x100 mm DRESSED STONES PLACED IN ALTERNATE COURCES RUBBLE MASONRY PILASTER


BACKFILLING WITH 75 mm TOPSOIL


COPING STONE -RANDOM RUBBLE MASONRY -DECKMEN STONE ACTS AS ANCHOR LIME MORTAR-CRUSHED STONE **BASE STONE FOR** CUT AND FILL DONE FOUNDATION AT ANGLE TO MINIMIZE SOIL -PRESSURE COMPACTED GRAVEL —100 mm DRAIN PIPE MURUM-**RETAINING WALL SECTION**

COMMUNITY HALL TRUSS AXOMETRIC VIEW

LEARNING CENTER


LIBRARY

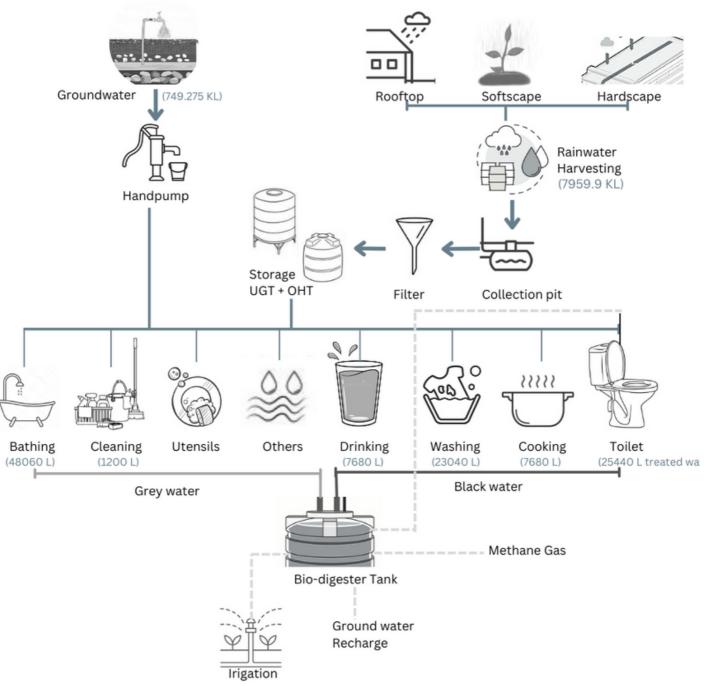
CATTLE SHED

ALL SITE BASED ROOF TRUSS PROFILES

OUTLINE SPECIFICATIONS

Out line of Building Systems	Solar panels	Biogas Plant	Ventilation	Rainwater harvesting System		
Summary of building system installed	Solar panels consist of a hybrid system.	The fuel required for cooking is generated using the biogas plant.	Natural Ventilation in the building provides a cooling effect by natural air flow by cross ventilation from SW and SE, evaporative cooling, courtyard effect, and thermally driven buoyancy.	Mechanical ventilation of the bulding includes fans.	Harvested rainwater is collected through a hybrid system of bioswales, water channels, drains, and from roof run-off.	
Description of automated operations, if applicable	Automation of power switch.	-	-	Automation of power switch.	Automation of power supply to pump.	
Instruction for operating the building system	-	-	-	-	-	
Description of manual operations, if applicable	When the power is not supplied from all three phases, that is not sufficient enough for all the appliances to work. During these conditions, occupants can switch on the battery-stored solar power.	Dump cow dung manually not more than 475kg. Checking of gas valves to avoid explosion or fire. Clearing the slurry produced as by product and using it as manure for farming.	Occupants can operate the windows to maintain there comfort level, depending upon health and environmental conditions. The windows can be opened full or half shutter during summers and winters to achieve thermal During heavy rains and high speed winds as well as to maintian privacy, occupants can adjust shutter louvers according to there comfort.	When occupants feel increase in humidity levels of the room, they can utilize the mechanical ventilation system by switching on the fan.	Pumping water to OHT in rainy seasons daily.	
	Cleaning the solar panels using water and mops bi-weekly bases during summer and winter season	The slurry canals & inlet outlet tanks should be cleaned to avoid blocage daily before use. Gate valve and gas pipe line be tested for leakage and rectification.	Check the windows for smooth operation and leaks before and after the monsoon season every year.	Check all components and tighten anything that may have come loose with a screwdriver. Lubricate Ceiling Fan Bearings	Bi-weeklycleaning of accumulated sediments,leaves and debris, to avoid breakage in water flow in water Checking and repairing the damage cause by weather,humans,	
Instruction for regular inspection and maintenance	Lead acid batteries	Gas holder and dome are checked for leakage in 6 months.	Clean the dust	Use a vacuum wand attachment or feather duster to remove all dust	Controlling vegetation growth in and around water channels by remoing plants weekly.	
	used, required refilling of distilled water yearly.	Worn out accessories are to be repaired or replaced yearly Gas taps/gas cock may need lubrication monthly.	accumalated on lovers for clean air to pass through.	Check and clean the motor every 14 days.	Replacing the dead or damaged vegetation in bio swales monthly.	
Operations of the system in critical mode	During extreme events, when the grid power supply is restricted, solar power is switched. This would provide electrical supply to the community hall, aminal shelter & first aid. Restricting the supply to certain blocks can reduce the load on battery storage and increase the supply time.	when gas production is low due to a shortage of cow dung, the gas can always be produced by	-	During events when mechanical ventilation stops working due to technical issues, window shutters can be opened to allow natural airflow.	During a shortage of water supply a backup of 48 hours is provided.	

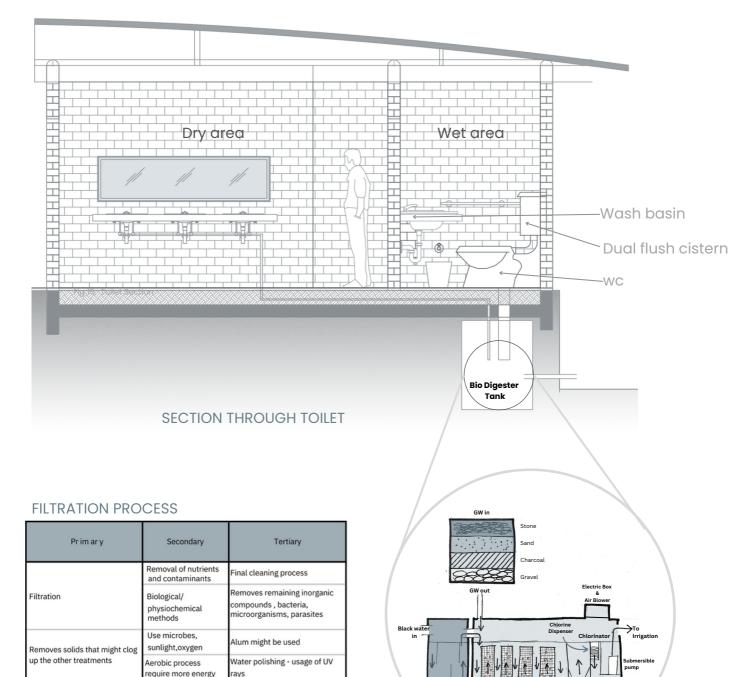
ENERGY SIMULATION INPUTS


Input Parameters	Proposed Design Values						
Ger	neral						
Building Area	1716 sq m						
Conditioned Area	0 sqm						
Electricity Rate	7 INR/kWh						
Natural Gas Rate	0 INR/GJ (BIOGAS USED)						
Building Occupancy Hours	8HRS (from 9am -5pm)						
Average Occupant Density	0.17 person/m ²						
Interior Average Lighting Power Density	2.62 W/m ²						
List of Lighting Controls	Switch board						
	17 l/sec.m ²						
(Building Average) 17 l/sec.m ² Envelope							
Roof Assembly U value	1.4						
Roof Assembly SRI	0.32						
Average Wall Assembly U value	0.293 W/m².K						
Window to Wall Area Ratio (WWR)	20%						
Windows U value	5.894						
Windows SHGC	0.861						
Windows VLT	0.898						
Infiltration Rate	0.5 ach						
Describe Exterior Shading Devices	The adobe bricks are used for walls with angular facades on the south side. To prevent rainwater from destroying the bricks, the lower part (Height: 1m from the plinth) is made of rubble.						

Input simulations

NET-ZERO WATER CALCULATIONS

SUMMARY OF WATER CYCLE:


The net-positive water cycle is achieved with a demand of **55 liters per person per day**. The water demand is therefore **reduced by 55.25%** using the principle of Reduce, reuse, and recharge. The effective methods for storage, treatment, collection, and optimization are achieved by the usage of bioswales, bio digesters, and aerators.

Water use	Quantity	Quantity
Domestic Use (LPD/ Head)	300	55
Irrigation (max) : {m2 x l/m2}	1000 _{Tab}	1.7
Cooling tower (max) : {Ton x l/Ton}	0	0
Other	-	-

Rainwater harvesting surfaces	Area(m2)	Running co- efficient	Effective Catchment area(m2)
Roof Surfaces	3200	0.85	2720
Hardscape Area	1140	0.7	798
Softscape Area	2415	0.3	724.5
Others	-	-	-
Total Effective Catchn	nent Area		4242.5

REUSAGE OF WATER THROUGH BIO-TIOLETS:

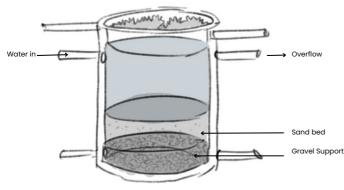
BIO-TOILETS A biodigester tank is an in which microorganisms are able to break down organic matter into **biogas** and **liquid fertilizer** through a process called anaerobic digestion. Organic matter can include a variety of waste products, such as

Bio-Digeste

agricultural waste, **animal manure**, or even **human waste.**

Anerobic process require less energy

Clarification


Aeratior

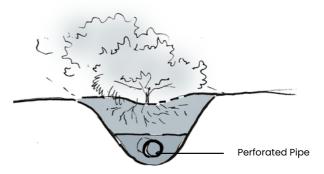
Chlorinatio

WATER CALCULATIONS AND SYSTEMS:

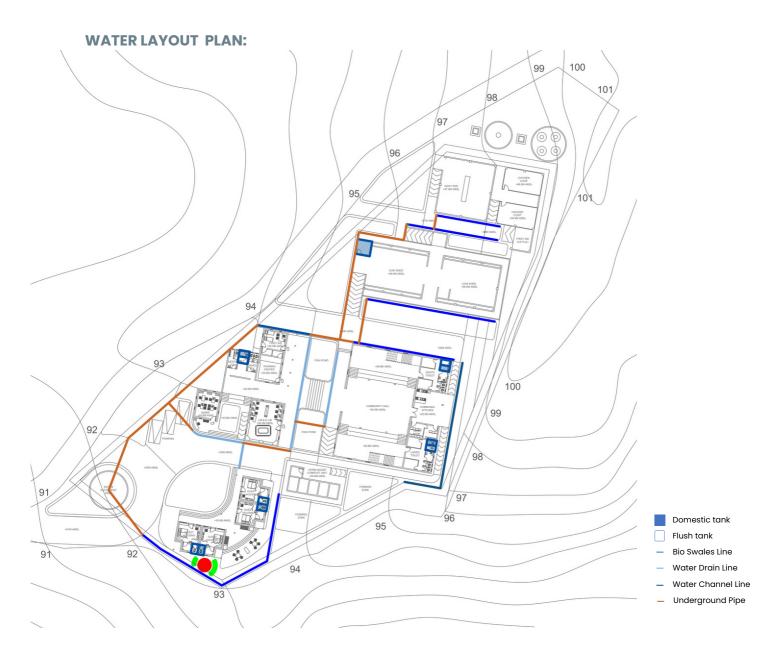
Sediment filtration is a process of removing suspended solids and other large particles from water. Sediment filters are typically made of a **bed of sand, gravel,** or other media that has various sizes of pore spaces.

WATER CALCULATIONS:

Per Capita Consumption per day										
	Domestic (lts)									
Activities	Period of Standard Use	Period of Resilience								
Wash basin	4L (10%)	2L (6.667%)								
Drinking	12L (30%)	10L (33.33%)	40 Litres of							
Cooking	2L (5%)	2L (6.667%)	water for							
Cleaning	4L (10%)	standard use and reduce to								
Activities	Flushing (lts)		30 litres in time of resililence							
WC flushing	12L(30%)	10L(33.33%)								
Urinal Flushing	6L (15%)	5L (16.667%)								


Occupant's Activity	Percent Usage Quantity		Grey Water	Black water
	%	litres	litres	litres
Drinking	9.09	2	0	2
Cooking	9.09	2	0	2
Flushing	27.27	6	0	6
Bathing	54.54	12	12	0

Vol.		Area	Height	Capacity days								
	OHT											
75000		50	1.5	4.5								
Storage Ta	Storage Tanks (Community Hall, Toilet Block ,Guest Housing)											
Domesti	375	2.5	1.5	3								
c	0	2.5	1.5	3								
Flushing	375 Water	Collection pit										
1,00,000	0	50	2	3								
	Septic Tank											
14140		7.07	2	3								


Bioswales are a type of green infrastructure used for stormwater management. They are shallow channels that are designed to capture, filter, and treat stormwater runoff.

Per Capita Consumption per day										
	Domestic (lts)									
Activities	Period of Standard Use	Period of Resilience								
Wash basin	1.5L (8.5%)	Aided by using								
Drinking	12L (68.5%)	10L (66.667%)	aerators and							
Cooking	2L (11.4%)	2L (13.334%)	reuse of greywater, water							
Cleaning	2L (11.4%)	2L (13.334%)	consumed is reduced to 17.5							
Activities	Flushing (lts)		Lts and 15 Lts							
WC flushing	0	0	during Resilience time							
Urinal Flushing	0	0								

Mulch Bio retension soil Gravel base Perforated Pipe

BIOSWALES

NET ZERO WATER CALCULATIONS:

								Whitewate	r			Greywa	ter Reuse	Total grey water consumed	Total Water Consumption	Total Black Water Generated	Reduced blackwate
Months	Occupancy	No. of days	Rainfall (mm)	Effective rain (mm)	Harvested rainwater (l)	Drinking (per person 21)	Cooking	Cleaning (per person 2l)	Bathing (per person 12l)	Washing	Animal drinkin g	Flushing 3 lpf	Irrigation	per month	per month	per month	r per month
	Daily - 30	26				60	60		360	180		180					75
January	Events - 300	5	0	0	0	600	600	100	3600	1800		2000		3380	9497	9497	2238
,	Daily - 30	25				60	60		360	180	1	180	1				75
February	Events - 300	3	0	0	0	600	600	100	3600	1800	8 Cows + 8 Goats+	2000		3380	9497	9497	2238
	Daily - 30	26				60	60		360	180	20 Hens	180	1				75
March	Events - 300	5	0	0	0	600	600	100	3600	1800	250	2000		3380	9497	9497	2238
	Daily - 30	25				60	60		360	180	1	180	1				75
April	Events - 300	5	0	0	0	600	600	100	3600	1800		2000		3380	9497	9497	2238
	Daily - 30	26				60	60		360	180	1	180	1		0.007	9497	75
May	Events - 300	5	0	0	0	600	600	100	3600	1800		2000		3380	9497		2238
	Events - 300											2000	600 sq.m x	2600	430500	430500	2238
June	Resilience	30	585	580	1566000	600	600	100	3600	1800			1 litre =		430500	430500	
	Events - 300										8 Cows + 8 Goats+	2000	600 litres	2600	444850	444850	2238
July	Resilience	31	1162	1157	3123900	600	600	100	3600	1800	20 Hens				444030	44440.30	
	Events - 300										3450	2000		2600	444850	444850	2238
August	Resilience	31	710	705	1903500	600	600	100	3600	1800					444650	444850	
	Events - 300											2000		2600	430500	430500	2238
September	Resilience	30	370	365	985500	600	600	100	3600	1800					450500	450500	
	Daily - 30	26				60	60		360	180	8 Cows +	180			9497	9497	75
October	Events - 300	5	105	100	270000	600	600	100	3600	1800	8 Goats +	2000		3380			2238
	Daily - 30	25				60	60		360	180	20 Hens	180			9497	9497	75
November	Events - 300	5	45	40	108000	600	600	100	3600 360	1800	250	2000		3380			2238
	Daily - 30	26				60 600	60 600		3600	180		180			9497	9497	75
	Events - 300	5	0	0	0	7680	7680	100	46080	1800		2000		3380			2238
TOTAL		365		7956900		/080	7080	1200	40000	23040	biogas	25440		37440	1826676	1826676	27456

Summary of Cost Estimation

Project Su	ummary							
Project Infor	ma Project Informa	ation						
	Team:	Nishtha						
	Division:	Community Res	ilience Shelter	Land Cost:	100	Million INR		
		Site Area (sqm)	6,234	City:	Palghar			
		Built-up Area (E	1,752	State:	Maharashtra			
		Ground Covera	2,185					
Project \$	Summary							
			aseline Estima	stimate (Project Partner / SOR basis				
S.No.	Particulars	Definition	ount in Million	%	(INR per sqm)	ount in Million	%	(INR per sqm)
1	Land	Cost of land pu	100	63.70%	57,078	100	63.70%	57,078
2	Civil Works	Refer Item A, C	39.94	25.50%	22,797	38.77	24.70%	22,130
3	Internal Works	Refer Item B, C	2.25	1.40%	1,282	1.72	1.10%	983
4	MEP Services	Refer Item C, C	0.69	0.40%	397	0.7	0.40%	399
5	Equipment & Fi	Refer Item D, C	0	0.00%	-	0	0.00%	-
6	Landscape & S	Refer Item E, C	0.19	0.10%	110	0.12	0.10%	70
7	Contingency	Amount added	2.15	5.00%	1,229	2.07	5.00%	1,179
	TOTAL HARD C	OST	145.23	96.20%	82,893	143.38	95.10%	81,840
8	Pre Operative E	Cost of Permits	0.02	0.00%	11	0.02	0.00%	11
9	Consultants	Consultant fees	0.06	0.00%	34	0.06	0.00%	34
10	Interest During	Interest paid on	11.62	7.40%	6,632	6.4	4.10%	3,653
	TOTAL SOFT CO	OST	11.7	7.50%	6,677	6.48	4.10%	3,699
	TOTAL PROJEC	TCOST	156.93	100.00%	89,570	149.86	95.50%	85,538

Summary

- 1. The cost of landscaping is reduced significantly by the usage of native species which require no cost for plantation.
- 2.Built-in furniture reduces the capital cost of furnishing and increases durability reducing maintenance costs.
- 3.Contingency cost is estimated to be greater because of the usage of materials like bamboo which require appropriate sizing and material handling.
- 4. Charges for MEP services are significantly reduced by the use of passive and native techniques in architecture.

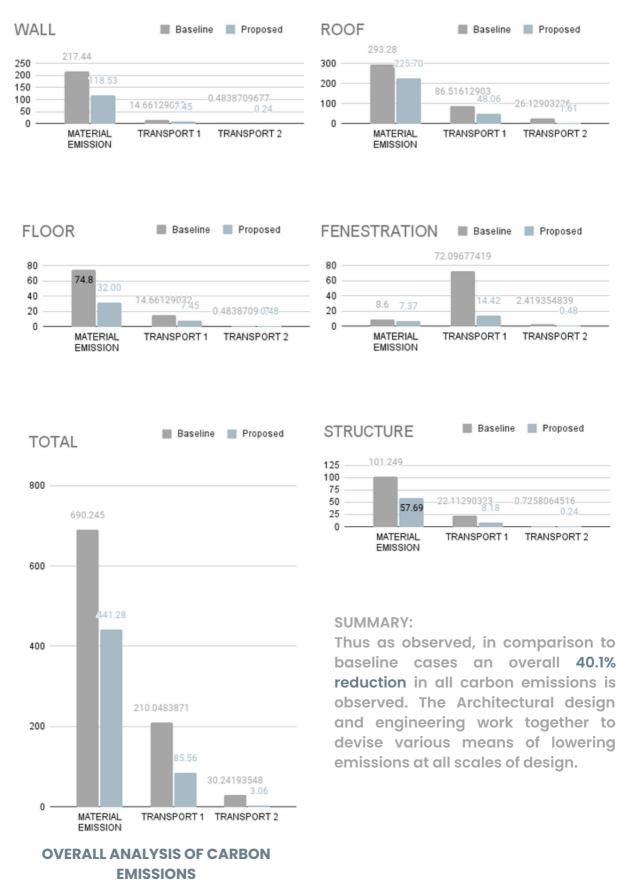
Strategies

- The proposed cost estimate is substantially decreased due to use of local materials **reducing the transportation cost**.
- Right-sizing of materials to **reduce material wastage** and any opex costs for refurbishing the materials ISHRAE standards.
- labor cost is reduced as the **community itself is employed** in the construction.
- The landscape is such planned that only native trees are planted which don't require special maintenance and also aid in reusing water several times with biological treatments.
- Passive systems of ventilation, and shading, are devices that increase the capex cost but **reduce the recurring opex cost**.
- The community hall modifies itself to create an **economy-generating** marketplace.

SUMMARY CALC	ULATION							
		BASEI	LINE			PROP	OSED	
SYSTEM TYPE	MATERIAL EMISSION (kg-CO2 e)	TRANSPORT 1 (kg-CO2 e)	TRANSPORT 2 (kg-CO2 e)	TOTAL (kg-CO2 e)	MATERIAL EMISSION (kg-CO2 e)	TRANSPORT 1 (kg-CO2 e)	TRANSPORT 2 (kg-CO2 e)	TOTAL (kg-CO2 e)
WALL	217.44	14.66	0.48	232.59	118.53	7.45	0.24	126.22
ROOF	293.28	86.52	26.13	405.93	225.70	48.06	1.61	275.37
FLOOR	74.8	14.66	0.48	89.95	32.00	7.45	0.48	39.93
FENESTRATION	8.6	72.10	2.42	83.12	7.37	14.42	0.48	22.27
STRUCTURE	96.125	22.11	0.73	118.96	57.69	8.18	0.24	66.11
	GRAND TOTAL emissio	ns per functonal u	unit (ka-CO2 e)	930.54	GRAND TOTAL emissio	ns per functonal u	init (ka-CO2 e)	529.9

TABULAR ANALYSIS OF PROPOSED CONSIDERATIONS

	Materials	Unit	Quantit y	Emissions Factor	Material Emissions	Type of vehicle	No. of trips	Total distance	Total fuel consumed	Transport Emission	Type of vehicle	No. of trips	Total distance	Total fuel consumed	Transport Emission
BASELINES	STANDARDS														
	Brick	kg	7260	0.39	2831.4	Lony		59.6	24.03	144.19	Lony		2	0.81	4.84
	Cement	kg	1460	0.91	1328.6		ò	0	0.00	0.00		0	0	0.00	0.00
WALL	Steel														
VINILL	reinforcement	kg	20	2.6	52	Lony	1	2	0.81	4.84		0	0	0.00	0.00
	Lime Plaster	kg	500	0.27	135	Lony	1	59.6	24.03	144.19	Lony	1	2	0.81	4.84
	Stone	kg	200	0.009	1.8		0	0	0.00	0.00		0	0	0	0
			Total Ma	terial Emissions	217.44	Total	Transport 1	Emission per fu	notional unit	14.00129032	Total	Transport	2 Emission per fune	tional unit	0.483870967
	Steel	kg	1450	2.5	3625	Lonv	1	59.6	24.03	144.19	Lonv	1	2	0.81	4.84
	Joinery	-9	1400	4.0	302.0	Lony		98.0	24.03	144.10	Lony	1		v.81	4.04
	Wireframe	kg	8	2.2	17.6	Mini truck	1	59.6	24.0	480.6	Mini truck	1	2	0.8	10.1
ROOF	Steel Purlins	kg	120	3.5	420	Mini truck	1	59.6	24.0	480.6	Mini truck	1	2	0.8	10.1
	Mangalore tiles	kg	3300	0.51	1683	Lony	1	59.6	24.03	144.10	Lony	1	2	0.81	4.84
	Glazed Glass	kg	100	1.2	120	Mini truck	1	59.6	24.0	480.6	Mini truck	1	59.6	24.0	480.6
-			Total Ma	terial Emissions	293.28	Total	Transport 1	Emission per fu	notional unit	88.51612903	Total	Transport :	2 Emission per fund	tional unit	26.12903226
	Stone	kg	2500	0.01	25	Lony	1	2	0.81	4.84		0	0	0	0
	Soil Fill	kg	3000	0	0		0	0	0	0		0	0	0	0
FLOOR	PCC bedding	kg	0	0	0		0	0	0	0		0	0	0	0
	RCC	kg	1500	0.26	390	Lony	1	59.6	24.03	144.10	Lony	1	2	0.81	4.84
	Tile	kg	2300	0.47	1081	Lony	1	59.6	24.03	144.19	Lony	1	2	0.81	4.84
			Total Ma	terial Emissions	74.8	Total	Transport 1	Emission per fu	notional unit	14.66129032	Total	Transport	2 Emission per fund	tional unit	0.48
	Timber frame	ka	20	2.4	48	Mini tourik		59.6	24.0	480.6	Mini truck		2	0.8	18.1
ENESTRATI	Glazed Glass	kg	20	0.8	10	Mini truck	1	59.6	24.0	480.6	Mni tuck	1	2	0.8	18.1
ON	Shutters	kg	45	2.4	108	Mini truck	1	59.6	24.0	480.6	Mini truck	1	2	0.8	18.1
_			Total M	terial Emissions	8.0	Total	Transport 1	Emission per fu	notional unit	72.09677419	Total	Transport	2 Emission per fund	tional unit	2.419354839
	RCC	kg	2500	0.28	650	Lony	1	59.6	24.03	144.19	Lony	1	2	0.81	4.84
	RCC Step footing	kg	1000	0.26	260	Lony	1	59.6	24.03	144.10	Lony	1	2	0.81	4.84
TRUCTURE	Coarsed Quoin Stone	kg	180	0.056	10.08	Lony	1	2	0.81	4.84		0	0	0	0
	Coarsed				92.4										
	Basalt Stone PCC Bed	kg kg	1650	0.058	92.4	Lony	1	2 59.6	0.81	4.84	Lonv	0	0	0.81	0
	Poc Beg	~9	3750	0.27	1012.0	Lony	,	0.00	24.03	144.19	Lony	,	4	9.81	4.04


TABULAR ANALYSIS OF BASELINE CONSIDERATIONS

	Materials	Unit	Quantit	Emissions Factor	Material Emissions	Type of vehicle	No. of trips	Total distance	Total fuel consumed	Transport Emission	Type of vehicle	No. of trips	Total distance	Total fuel consumed	Transport Emission
DESIGN ST	ANDARDS														
	Adobe	kg	1860	0.01	18.6	Lorry	1.0	59.6	24.0	144.2	Lony	1	2	0.8	4.8
	Local Mortar	kg	500	0.11	55		0.0	0.0	0.0	0.0		0	0	0	0
WALL	Stone	kg	200	0.01	2	Lony	1.0	2.0	0.8	4.8		0	0	0	0
	Plaster	kg	8500	0.27	2295		0.0	0.0	0.0	0.0		0	0	0	0
	Water	1		0	0		0.0	0.0	0.0	0.0	-	0	0	0	0
_		_	T.c.	al Material		_		I			_		1		_
				missions	118.53	Total To	ansport 1	Emission per fu	nctional unit	7.5	Total 1	iransport 2	Emission per fun	ctional unit	0.2419
	Bamboo	kg	1450	1.5	2175			0	0.0	0.0		0	0	0	0
	Joinery boilting	kg	7	2.2	15.4	Mini truck	1	59.6	24.0	480.6	Mini truck	1	2	0.81	10.13
121242	Purins		87	1.5	130.5	- Mini Duck		000	0.0	0.0	- NINI FOOR	0	0	0.00	0.00
ROOF	Half Cut Bamboo	kg kg	1450	1.5	2175			0	0.0	0.0		0	0	0.00	0.00
	Polycarbonate	49	1400	1.0	21/5				0.0	0.0				0.00	0.00
	sheet	kg	0	3	18	Mini truck	1	59.6	24.0	480.6	Mini truck	1	2	0.81	16.13
_	_	-	Tot	al Material	_	_					-		II		_
				missions	225.695	Total Te	ansport 1	Emission per fu	nctional unit	48.1	Total 1	fransport 2	Emission per fun	ctional unit	1.6
	Stone	kg	2500	0.01	25	Lony	1	2	0.81	4.84	Lony	1	2	0.81	4.84
FLOOR	Soil Fill	kg	3000	0	0		0	0	0	0		0	0	0	0
FLOOR	Plastic Bottles	kg	1500	0	0		0	0	0	0		0	0	0	0
	Lime plaster	kg	1430	0.43	614.9	Lony	1	59.6	24.03	144.10	Lony	1	2	0.81	4.84
			Total Ma	derial Emissions	31.995	Total	Transport 1	Emission per fu	notional unit	7.451612903	Total	Transport :	2 Emission per fund	tional unit	0.483870967
	Wooden frame	kg	20	2.4	48	Lorry	1	59.6	24.03	144.10	Lony	1	2	0.81	4.84
ENESTRATION		kg	20	-0.43	-8.0	- Comy	0	0	0.00	0.00	Comy	0	0	0.00	0.00
STED THAT TOP	Shutters	kg	45	2.4	108	Lony	1	59.6	24.03	144.19	Lorry	1	2	0.81	4.84
_			Total Ma	erial Emissions	7.37	Tatal	Transport 1	Emission per fur	for leasting	14.41935484	Tatal	Transand	2 Emission per fund	found	0.48
		_	1000100		1.40		internation in			14,418,0404		l			0.40
	Stone Column	kg	2500	0.01	25	Lony	1	2	0.81	4.84		0	0	0	0
	Rubble Rubble footing	kg	1000	0.01	10	Lony	1	2	0.81	4.84		0	0	0	0
TRUCTURE	Coarsed Quoin Stone	kg	997	0.056	55.832	Lony	1	2	0.81	4.84		0	0	0	0
I NOU LORE	Coarsed	-0		0.030	W # 46	Lony			9.81			0		2	
	Basalt Stone	kg	900	0.058	50.4	Lony	1	2	0.81	4.84		0	0	0	0
	Hard Stone Foundation	kg	3750	0.27	1012.5	Lony	1	59.6	24.03	144.19	Lony	1	2	0.81	4.84
				terial Emissions	57.6866			Emission per fui		8.177419355	Total				0.24

EMBODIED CARBON CALCULATIONS

EMBODIED CARBON CALCULATIONS

GRAPHICAL ANALYSIS OF CARBON EMISSIONS WRT BUILDING SYSTEMS

BUILDING OPERATIONAL NARRATIVE

Exterior lighting:

- LED Street light provides lighting solution during evenings and nights
- Operated by the village staff.
- To navigate the villagers during the night, the LED street lights which are along the roadside should be lit. And at the time of the resilience or whenever the center is occupied at night, the streetlights should be lit to ensure security.
- Make sure to switch off the lights soon after sunrise.

Interior Lighting:

- Toilet lights need to be on all the time whenever the community center is in use.
- The use of natural light is encouraged to save energy usage.
- Village staff should check all the switches before leaving and make sure to switch them off. This is to be done to not only save energy but also to avoid fires and short circuits.
- Important spaces like a community hall, first aid, and cattle shed should be lit brightly during the resilience period.

Thermal comfort and ventilation system, including operable windows:

- Opening of windows half shutter, full shutter to maintain the thermal comfort level
- To maintain the privacy or to restrain the rainfall from entering, one can adjust the shutter louvers to permit the entering wind.
- If the humidity level of the room increases, one must switch on the fans.
- Partially opened windows and doors, partially opened windows and doors can still provide adequate ventilation especially when the weather is colder.
- Village staff shall open windows and doors fully to air spaces before and after occupancy open windows fully at the start and end of the day to ventilate the room fully.
- Opening windows and doors opposite each other, will facilitate a quick exchange of room air for fresh air.

Renewable energy and on-site energy storage system:

Solar:

- Main circuit board to be operated by the village staff in times of resilience, maintenance or whenever required.
- Cleaning of solar panels to be done by the village staff during the summer and winter season on bi-weekly basis to prevent accumulation of dirt or dust which reduces the efficiency of the panels.
- Cleaning to be done with clean water and mop to remove the stuck on dirt or dust on the panels.
- Don't cover the panels with anything, tall trees should not be allowed to grow near the panels to ensure maximum exposure to sunlight.
- Ensure battery storage area to remain free from moisture at all times.
- Maintenance of the lead acid batteries to be done on yearly basis to ensure proper functioning and prolonged life of the batteries.
- Don't touch the battery terminals, cleaning of the batteries should be done by a proper technician.
- Use of hybrid system for power supply grid to maximize the use of solar power during the time of need.
- Auto switching between main power grid and solar power when electricity gets shut off from main power grid, no manual switching required by the village staff.
- Don't manually switch between main power grid and solar power unless required.
- Manual switching to be done by the village staff if needed during unavailability of one or two of the three phases from the main power grid.

Biogas plant:

- Remove, straw pieces of sticks, etc. from the slurry (mixture of dung and water) before feeding.
- Village staff shall remove, straw pieces of sticks, etc. from the slurry (mixture of dung and water) before feeding.
- Village staff shall break the scum formed on the surface of the slurry in the digester by rotating the gas holder daily after feeding.
- Close the main gas cock by the end of operational hours of the structure after the use of gas is over.
- Use soap solution for testing leakage of gas in the dome/gas holder.
- Don't inhale biogas since it may be hazardous.
- Don't make the air shutter tight or too loose. In both the cases, there would be incomplete combustion and thus wastage of gas.
- Don't add either more water or less water to make a homogeneous mixture with cattle dung for feeding.
- Don't allow soil or sand particles to entire the digester along with the slurry.
- Feed biogas plant with cattle dung and water in 1:1 proportion, making it a homogeneous mixture after thorough mixing.
- End users or villagers using the biogas as fuel should not inhale it and lit the gas properly using a lighter.

Water supply and wastewater processing system

- The water system will be a partially automated system as at a few junctures we rely on the natural forces of plants and the groundwater.
- Maximum rainwater will be harvested during the months of June October through surface and roof runoff. One should ensure that these surfaces are maintained well by at least cleaning the ground surfaces daily and roof surfaces once in 3 days and are free of any hazardous chemicals that may pollute the water.
- The drains which are assisted by bioswales should be maintained weekly by trimming the plants and vegetation above them.
- All the storage tanks overhead as well as underground to be cleaned at least twice a year.
- While cleaning first, drain the tank. Through the exit valve, drain the water. Make sure there won't be any localized flooding due to the water. With a bucket, collect any remaining water. The tank must first be cleaned and emptied from the outside.
- After that, sprinkle liquid detergent and baking soda on the tank walls after preparing the mixture. Scrub the interior of the tank with an abrasive sponge or bristle brush.
- Sediment, algae, rust, and biofilm can be ridden out with a pole-mounted brush or a power washer.
- All hoses, pumps, and pipes used to fill and empty the tank should be cleaned and rinsed.
- To obliterate the detergent and any other cleaning ingredient, use a water jet. Allow it to air dry.
- Clean your faucets with a mild cleaner and damp cloth to remove dirt particles and grease.
- Aerators get worn out and accumulate dirt over time. Ensure that you clean aerators at least annually.

PARAMETERS TO MEASURE THE PERFORMANCE OF BUILDING

Sanitary Fixtures	Cistern flush & flush tank(wall mounted)	Aerator	Taps	Wash basin	Kitchen sink	Tiles
Image of the Sanitary fixture						
Baseline water usage LPM (1 BAR Pressure)	6 Its					
Benchmark water usage LPM (1 BAR Pressure)	3 Its					
Cost (INR)	1,150	199	378	2,799	1,695	₹ 55/ ft²
Company	Hindware	Acetap	Alligator	REMANENCE	ATC Jindal	Kajaria

Electric Fixtures	LED Bulb	Batten Light	Switch Board	Street Light
Image of the Electric fixture	Nersea Bart	Manufacture Contraction of the C		A Margaby
Power Usage (kWh)	0.012	0.02	-	0.075
Cost (INR)	70	200	845	2,180
Company	Syska	Syska	Anchor	75W LED Street Light - Galaxy
Electric Fixtures	Stand Fan	Ceiling Fan	Computer	Pump
		-		-
Image of the Electric fixture				MB Series 1 Phase
Image of the	0.06	0.06	0.25	
Image of the Electric fixture			0.25 30,000	MB Series 1 Proceeding

RACHANA SANSAD'S ACADEMY OF ARCHITECTURE M U M B A I FOUNDED IN 1955, AFFILIATED TO UNIVERSITY OF MUMBAI, RECOGNISED BY COUNCIL OF ARCHITECTURE AND GOVERNMENT OF MAHARASHTRA

Ref. No. 06/stu/337/2302

Date : 07/02/2023

TO WHOMSOEVER IT MAY CONCERN

You are aware that Academy of Architecture, an Architecture Institution in Mumbai, imparts Five Year (full time) Bachelor's Degree Course in Architecture, affiliated to the University of Mumbai.

The undermentioned students of Third Year B. Arch studying during session 2022-2023 are participating in the design challenge of Solar Decathlon India. We acknowledge them as Bonafide Students from our esteemed College.

(Suresh M. Singh) Principal Academy of Architecture

Name of the Students:-

- 1. Hetika Vani
- 2. Praniti Bhoir
- 3. Sandesh Jadhav
- 4. Pranay Kutal
- 5. Tejas Shinde
- 6. Shrutika Mahajan
- 7. Anushree Harmalkar 8. Isha Padte
- o. Islia Faule
- 9. Isha Keni
- 10. Nikita Jagzap
- 11. Rahul Bhoye

278, Shankar Ghanekar Marg, Prabhadevi, Mumbai - 400 025. Tel. : 2430 1024 / 2431 0807 Fax : 2430 1724 Email: contact@aoamumbai.in website : www.aoamumbai.in

RACHANA SANSAD'S ACADEMY OF ARCHITECTURE

Ref. No. AOAUA / STU / 367 / 2023

22nd February, 2023

TO WHOMSOEVER IT MAY CONCERN

This is to certify that SHRI ADITYA PARAG SHANBHAG is a bonafide student of the Academy of Architecture (unaided) studying in the Third Year Architecture during session 2022-2023 of the Five Year (Full-time) Bachelor's Degree Course in Architecture affiliated to the University of Mumbai.

This certificate is issued for the purpose of Solar Decathlon, India.

Thanking you

For Academy of Architecture (unaided)

Dr. Shilpa Sharma HOD Incharge, Professor (Ad-hoc)

278, Shankar Ghanekar Marg, Prabhadevi, Mumbai - 400 025. Tel. : 2430 1024 / 2431 0807 Fax : 2430 1724 Email: contact@aoamumbai.in website : www.aoamumbai.in

VEERMATA JIJABAI TECHNOLOGICAL INSTITUTE MUMBAI

H R Mahajani Marg, Matunga east, Mumbai, Maharashtra 400019

BONAFIDE CERTIFICATE

This is to certify that Mr. PANCHAL YUVRAJ ASHOKKUMAR

is /was a bonafide student of this institute attending Fourth Year

NOIC

of the Four Year Degree Course in (B.TECH) Civil Engineering

His Character and conduct have been good.

His Roll No. is /was 201010909 Year 2022-23

Date & Place of Birth 06-June-2001

Registrar VEERMATA JIJABAI TECHNOLOGICAL INSTITUTE MUMBAI H R Mahajani Marg, Matunga east, Mumbai, Maharashtra 400019

Date: 14/02/2023

Note : This is computer generated certificate.

Printed Date :14/02/2023 11:14:42 am

Page 1

No: CEPT/FA-PG2022-23/1080

TO WHOMSOEVER IT MAY CONCERN

20th Feb. 2023

This is to certify that Mr. Aarohan Dutta (PLA21004) is a bonafide student at CEPT University under the Master's in Landscape Architecture program at the Faculty of Architecture, registered in the Spring 2023 semester.

This certificate has been issued on the student's request to participate in the Solar Decathlon India competition (Design Challenge).

WWW.CEPT.AC.IN

5J. Prepared by Shivani Joshi Anita Hiranandani Registrar **CEPT University**

CAMPUS, UNIVERSITY RD NAVRANGPURA T+91 79 2630 2470 GUJARAT, INDIA F+91 79 2630 2075

AHMEDABAD 380 009

KASTURBHAI LALBHAI

LETTER OF CONFIRMATION: PROJECT PARTNER

AKSHAR DHARA FOUNDATION Regn. No. 317803 805 / 806, Palm Project 'C' Co - op. HSG Society Limited Link Road, Malad (West), Mumbai - 400 064 Tel. : +91 93725 81487 Email : enquiry@akshardhara.org Website : www.akshardhara.org

Date: 10-Oct-2022

To, The Director, Solar Decathlon India

Dear Sir,

This is to inform you that our organization, **Akshardhara Foundation**, has provided information about our **JEEVIKA** project to the participating team led by **Rachna Sansad's Academy of Architecture**, so that their team Nishtha may use this information for their **Solar Decathlon India 2022-23 Challenge** entry.

As a **Project Partner** to this team for the Solar Decathlon India 2022-23 competition, we are interested in seeing the Net-Zero-Energy, Net-Zero-Water, resilient and affordable solutions this student based team proposes and the innovation that results from this.

We intend to have a representative from our organization attend the Design Challenge Finals event in April, if this team is selected for the finals.

We would like our organization's **logo** to be displayed on the Solar Decathlon India website, recognizing us as one of the Project Partners for the 2022-23 Challenge.

With warm regards,

Name of Representative: PRADEEP SHARMA Designation: DIRECTOR Email: ARYASHARMA25@YAHOO.CO.IN Phone: 9987014091

LETTER OF CONFIRMATION: INDUSTRY PARTNER

Date: 23rd Feb

To,

The Director,

Solar Decathlon India

Subject: Confirmation letter from Industry partner

Dear Sir,

This is to inform you that our firm, 'Nirmittee Consultant', is collaborating with the participating team led by Rachana Sansad's Academy of Architecture. This team is working on a Community Resilience Shelter Building project for their Solar Decathlon India 2022-23 competition entry.

The nature of our collaboration will cater to innovative design. We will aid the students to design in effective use of locally sourced materials and their construction techniques.

We would not be able to have a representative from our organization to attend the Design Challenge Finals event in April/May, if this team is selected for the Finals.

We do not want our organization's logo displayed on the Solar Decathlon India website, recognising us as one of the Industry Partners for the 2022-23 competition.

With warm regards,

Ar.Mangesh Jadhav, Founder, Nirmittee consultants, mangesh10@gmail.com, 9869135153.

LETTER OF CONFIRMATION: INDUSTRY PARTNER

Date: 23rd Feb

To,

The Director,

Solar Decathlon India

Subject: Confirmation letter from Industry partner

Dear Sir,

This is to inform you that our organization, 'Agnigarbha Pvt. Ltd.' is collaborating with the participating team led by Rachana Sansad's Academy of Architecture. This team is working on a Community Resilience Shelter Building project for their Solar Decathlon India 2022-23 competition entry.

The nature of our collaboration will cater to innovative design. We will guide the team with creative use of solar panels and its optimization.

We would not be able to have a representative from our organization to attend the Design Challenge Finals event in April/May, if this team is selected for the Finals.

We do not want our organization's logo displayed on the Solar Decathlon India website, recognising us as one of the Industry Partners for the 2022-23 competition.

With warm regards,

Kiran Bhagat, Director, Agnigarbha Pvt. Ltd., Agnigarbha9@gmail.com 9819983570

