

Final Design Report

April 2023 Division: Educational Building

Project EKĀGRA Team: **GREEN COLLARS** Project Partner: **GYANDEEP FOUNDATIONS**

2. TABLE OF CONTENTS

<u>3. List of Tables</u>		3
<u> 4. List of Figures</u>		4
4.1 Abbreviations		7
<u>5. Executive Summary</u>		8
<u>6. Response to Reviewers'</u>	<u>Comments</u>	9
7. Team Introduction		11
<u>8. Project Background</u>		3
<u>9. Goals and Strategies</u>		15
10. Design Documentation	<u>.</u>	16
<u>10.1. Energy Perform</u>	nance	16
10.2. Water Performa	ance	21
10.3. Embodied Carl		
10.4. Resilience		27
<u>10.5. Engineering an</u>	d Operations	31
10.6. Architectural D	<u>esign</u>	35
<u>10.7. Affordability</u>		38
10.8. Innovation		39
10.9. Health and Wel	<u>ll-being</u>	12
<u>10.10. Value Propositi</u>	ion	15
<u>11. References</u>		16
<u>12. Appendix</u>		
<u>12.1. DPS Ekagra po</u>	oster ·····	17
12.2. R&D Block		18
<u>12.3. Detailed buildi</u>	ing area program	50
12.4. Comparative		· ·
12.5. Architectural [<u>Drawings</u>	52
<u>12.6. Engineering dr</u>	•	
<u>12.7. Energy calcula</u>	ations of design case	54
<u>12.8. Detailed calcu</u>	llations of energy requirements during hazards	59
12.9. Water calculat		
<u>12.10. Extra cost of e</u>	efficient equipment used in design case	
<u>12.11. Summary of co</u>	<u>ost estimate</u>	63
12.12 Summary of e	mbodied carbon calculations	64
<u>12.13. Building operat</u>	tion narrative	66
<u>12.14. Earthquake sim</u>	nulation	67
<u>12.15 Climate analysi</u>	<u>s</u>	58
12.16 Health and well	being calculations	59
<u>12.17. Additional calc</u>	sulations	72
12.18 Innovation		75
12.20 List of input an	d output parameters	
<u>12.21 Design Process</u>		81
13. Letters of confirmation		
•	<u>oject partner</u>	
13.2 Letters from in	<u>dustry partner</u> s	
13.3 Letters from ins	stitutions	86

3. LIST OF TABLES

Table 8.c.1 Area Details	13
Table 10.1.1 Window-wall ratios	17
Table 10.1.2 Showing base case vs design case envelope optimization	18
Table 10.2.1: Showing efficient water fixtures	21
Table 10.2.2: Harvested water	22
Table 10.2.3: Catchment area	22
Table 10.2.4: Water consumption	22
Table 10.2.5: Treated water generation and consumption	23
Table 10.3.1: Material sourcing distances(design & base case)	26
Table 10.3.2 EC reduction in emissions per functional unit	26
Table 10.4.1 Matrix of building systems	27
Table 10.4.2 Water requirements during disaster	27
Table 10.4.3 Biogas requirement during disaster	27
Table 10.4.4 Compost requirement for 300sqm field	27
Table 10.4.4 Fire rating of the major materials used in construction	30
Table 10.7.1 No of years taken to regain money spent on energy/water/carbon saving equipment in Design Case …	38
Table 10.7.2 Green Financing Options that could potentially be used for the building	39
Table 10.9.1: Maximum and minimum temperature ranges with 90% acceptability	42
Table 10.9.2: Air Exchanges achieved	44
Appendix table 1: Detailed building area programme	50
Appendix table 2: Comparative area	51
Appendix table 3: Solid waste management	53
Appendix table 4: Quantity of Solid waste generation in school per day	53
Appendix table 5 : Energy calculations of design case	54
Appendix table 6: Energy calculations	55
Appendix table 7: Lighting load calculations	55
Appendix table 8: Equipment optimization	56
Appendix table 9: Energy generation through solar panels	57
Appendix table 10: Power generated through impulse turbine	57
Appendix table 11: HVAC Load Optimization	58
Appendix table 12: Energy requirements during flood	59
Appendix table 13: Energy requirements during earthquake	59
Appendix table 14: Energy requirements during fire	59
Appendix table 15: Base Case breakup in normal condition	60
Appendix table 16: Design Case breakup in normal condition	60
Appendix table 17: Occupant Activity in normal conditions	60
Appendix table 18: Harvested water and demand of fresh water	60
Appendix table 19: Base Case breakup in disaster condition	61
Appendix table 20: Design Case breakup in disaster condition	61
Appendix table 21: Occupant Activity in disaster conditions	61
Appendix table 22: Tank Sizing	61
Appendix table 23: Extra Costs	62
Appendix table 24: Summary of Cost Estimate	63
Appendix table 25: System Type: Wall	64
Appendix table 26: System Type: Wall	64

4. LIST OF FIGURES

Figure 7.b.a: Design management process	12
Figure 7.b.b: Images of design process	12
Figure 8.c.a: Context Plan	13
Figure 8.c.b: Contour Plan	13
Figure 8.c.c: Site images as of 2nd Feb '23	14
Figure 8.c.d: SWOT Analysis	14
Figure 10.1.a: Sun path Diagram	16
Figure 10.1.b: Solar Radiation	17
Figure 10.1.c: Annual graph showing radiation	17
Figure 10.1.d: Key plan	17
Figure 10.1.e: Section through north-light truss	17
Figure 10.1.f: Shading devices designed for each facade according to the shading angles	17
Figure 10.1.g: Key plan and building elevations	18
Figure 10.1.h: Showing UDI simulation	19
Figure 10.1.i: Pie chart showing energy consumption breakup	19
Figure 10.1.j Graph showing EPI reduction	19
Figure 10.1.k: Graph showing annual energy consumption and generation	20
Figure 10.1.1: Solar panel layout	20
Figure 10.1.m: Energy flow diagram	20
Figure 10.2.a: Base case vs design case water consumption per day during normal scenario for	
2000 people as per NBC	21
Figure 10.2.b: Total reduced water demand per day per person	21
Figure 10.2.c: Base vs Design case flow rate comparison	21
Figure 10.2.d: Generation and consumption	22
Figure 10.2.e: Tank sizing	22
	22
Figure 10.2.e: Tank sizing	22
Figure 10.2.e: Tank sizing Figure 10.2.f: Rain water storage capacity	22 22
Figure 10.2.e: Tank sizing Figure 10.2.f: Rain water storage capacity Figure 10.2.g: Base case vs design case water consumption per day during disaster times for 500	22 22 22
Figure 10.2.e: Tank sizing Figure 10.2.f: Rain water storage capacity Figure 10.2.g: Base case vs design case water consumption per day during disaster times for 500 people	22 22 22 22 22
Figure 10.2.e: Tank sizing Figure 10.2.f: Rain water storage capacity Figure 10.2.g: Base case vs design case water consumption per day during disaster times for 500 people Figure 10.2.h: Occupants activity Figure 10.2.i: Water balance diagram Figure 10.3.a: Graph showing EC reduction for wall	 22 22 22 22 23 24
Figure 10.2.e: Tank sizing Figure 10.2.f: Rain water storage capacity Figure 10.2.g: Base case vs design case water consumption per day during disaster times for 500 people Figure 10.2.h: Occupants activity Figure 10.2.i: Water balance diagram	 22 22 22 22 23 24
Figure 10.2.e: Tank sizing Figure 10.2.f: Rain water storage capacity Figure 10.2.g: Base case vs design case water consumption per day during disaster times for 500 people Figure 10.2.h: Occupants activity Figure 10.2.i: Water balance diagram Figure 10.3.a: Graph showing EC reduction for wall	 22 22 22 23 24 24
Figure 10.2.e: Tank sizing Figure 10.2.f: Rain water storage capacity Figure 10.2.g: Base case vs design case water consumption per day during disaster times for 500 people Figure 10.2.h: Occupants activity Figure 10.2.i: Water balance diagram Figure 10.3.a: Graph showing EC reduction for wall Figure 10.3.b: Showing Zerund brick material passport Figure 10.3.c: Graph showing EC reduction for floor Figure 10.3.d: Graph showing EC reduction for roof	 22 22 22 23 24 24 24 25
Figure 10.2.e: Tank sizing Figure 10.2.f: Rain water storage capacity Figure 10.2.g: Base case vs design case water consumption per day during disaster times for 500 people Figure 10.2.h: Occupants activity Figure 10.2.i: Water balance diagram Figure 10.3.a: Graph showing EC reduction for wall Figure 10.3.b: Showing Zerund brick material passport Figure 10.3.c: Graph showing EC reduction for floor	 22 22 22 23 24 24 24 25
Figure 10.2.e: Tank sizing Figure 10.2.f: Rain water storage capacity Figure 10.2.g: Base case vs design case water consumption per day during disaster times for 500 people Figure 10.2.h: Occupants activity Figure 10.2.i: Water balance diagram Figure 10.3.a: Graph showing EC reduction for wall Figure 10.3.b: Showing Zerund brick material passport Figure 10.3.c: Graph showing EC reduction for floor Figure 10.3.d: Graph showing EC reduction for roof Figure 10.3.e: Graph showing EC reduction for roof Figure 10.3.e: Graph showing EC reduction for fenestration Figure 10.3.f: Graph showing EC reduction for structure	 22 22 22 23 24 24 24 25 26
Figure 10.2.e: Tank sizing Figure 10.2.f: Rain water storage capacity Figure 10.2.g: Base case vs design case water consumption per day during disaster times for 500 people Figure 10.2.h: Occupants activity Figure 10.2.i: Water balance diagram Figure 10.3.a: Graph showing EC reduction for wall Figure 10.3.b: Showing Zerund brick material passport Figure 10.3.c: Graph showing EC reduction for floor Figure 10.3.d: Graph showing EC reduction for roof Figure 10.3.e: Graph showing EC reduction for roof Figure 10.3.e: Graph showing EC reduction for fenestration Figure 10.3.f: Graph showing EC reduction for structure Figure 10.3.g: Graph showing EC reduction for structure Figure 10.3.g: Graph showing EC reduction for structure	 22 22 22 23 24 24 24 25 25 26 26
Figure 10.2.e: Tank sizing Figure 10.2.f: Rain water storage capacity Figure 10.2.g: Base case vs design case water consumption per day during disaster times for 500 people Figure 10.2.h: Occupants activity Figure 10.2.i: Water balance diagram Figure 10.3.a: Graph showing EC reduction for wall Figure 10.3.b: Showing Zerund brick material passport Figure 10.3.c: Graph showing EC reduction for floor Figure 10.3.d: Graph showing EC reduction for roof Figure 10.3.e: Graph showing EC reduction for roof Figure 10.3.e: Graph showing EC reduction for fenestration Figure 10.3.f: Graph showing EC reduction for structure	 22 22 22 23 24 24 24 25 25 26 26

	Contraction of the second
Figure 10.4.a: Graph showing frequency and impact of various hazards onsite	27
Figure 10.4.b: Diagram showing how food resilience is achieved	27
Figure 10.4.c: Heat Pump	28
Figure 10.4.d: Bioswale section	28
Figure 10.4.e: Section showing hollow plinth and peak flood level	28
Figure 10.4.f: Diagram showing all aspects of resilience within the structure	28
Figure 10.4.g: Diagram showing flood resilience	29
Figure 10.4.h replacing of benches with beds during disaster	29
Figure 10.4.i: Diagram showing earthquake resilience	29
Figure 10.4.j Results of seismic simulation	29
Figure 10.4.k: Bamboo portal frame structure for MPH	29
Figure 10.4.I Wind simulation for the MPH	29
Figure 10.4.m Daylight simulation for the MPH	29
Figure 10.4.n: .Floor plan showing fire resilience	30
Figure 10.4.o: Trend lines for rainfall, temperature and humidity	30
Figure 10.5.a: Structural grid and plinth beam layout	31
Figure 10.5.b: Details of expansion joint of footing and beam	31
Figure 10.5.c: Details of isolated footing ,tie beam, plinth beam and columns	31
Figure 10.5.d: Section through Seminar to show placement of equipment	32
Figure 10.5.e: HVAC LAYOUT	32
Figure 10.5.f: Detailing of South façade	32
Figure 10.5.g: Detailing of North façade window	32
Figure 10.5.h: North light truss	33
Figure 10.5.i: DETAIL – A (close up detail of fish mouth joint for top chord and struts)	33
Figure 10.5.j: DETAIL - B (close up detail)	33
Figure 10.5.k: Section through MPH	33
Figure 10.5.1: PHE layout	33
Figure 10.5.m: Water integrated system Plan	33
Figure 10.5.n: Section showing the integrated system	33
Table 10.5.o: Diameter of pipes used	33
Figure 10.5.p: Flow Chart Of Waste	34
Figure 10.5.q: Typical classroom electrical layout	34
Figure 10.5.r: BMS flow chart	34
Figure 10.6.a: Landscape elements	35
Figure 10.6.b: Floor Plans	35
Figure 10.6.c: View of sports field	36
Figure 10.6.d: View of the multi-purpose hall	36
Figure 10.6.e: Section through northern facade	36
Figure 10.6.f: Interior view of classrooms	36
Figure 10.6.g: Section of the building	36
Figure 10.6.h: User experience	37

Figure 10.7.a: Base Case vs Design Case Costing	38
Figure 10.7.b: Life Cycle Costing - STP	
Figure 10.7.c: Life Cycle Costing - Wall Material	39
Figure 10.8.a: Details of rice husk and bamboo mat movable acoustic partition walls	39
Figure 10.8.b: Nozzle & Casing	40
Figure 10.8.c: Sectional view	40
Figure 10.8.d: Impulse Turbine	40
Figure 11.8.e: Simulation results of impulse turbine	40
Figure 10.8.f: Turbine Integration with tank	40
Figure 11.8.g: Bamboo partition panel construction	41
Figure 10.8.h: Views showing various uses of bamboo partition panels	42
Figure 10.8.i: Sizes according to various ages	41
Figure 10.8.j: Earthquake shield bench	41
Figure 10.9.a: Psychrometric chart	42
Figure 10.9.b: Graph generated from Mahoney's table	42
Figure 10.9.c: CBE Thermal Comfort Tool	42
Figure 10.9.d: Graph showing thermal simulation(proposed case) overlay with adaptive comfort	
band	43
Figure 10.9.e: Relative humidity, total fresh air for July,	43
Figure 10.9.f: Envelope optimization of wall, window and roof for thermal comfort	43
Figure 10.9.g: Wind Simulations	43
Figure 10.9.h: Sunlight and airflow network diagrams	43
Figure 10.9.i: Section through north-light and northern window	43
Figure 10.9.j: View of the library	43
Figure 10.9.k: View of the central courtyard	44
Figure 10.9.1: View of the smaller courtyard and staircase between classrooms	44
Figure 10.9.m: View of self-shaded spaces due to staggering of the building	44
Figure 10.9.n: Partition walls for acoustic comfort	44
Figure 10.10.a: Project Partner Pitch	44
Appendix figure 1: School poster	47
Appendix figure 2: RnD block poster	48
Appendix figure 3: Energy board	48
Appendix figure 4: Time table	49
Appendix figure 5: Ground level plan	52

Appendix figure 7:Column Grid layout 52

Appendix figure 8:Construction Techniques & materials used

Appendix figure 15:Health & well being calculations

Appendix figure 6: First level plan

4.1. ABBREVIATIONS

GHG - Green House Gas AEC - Architecture Engineering & Construction **EPI** - Energy Performance Index lcpd - liters per capita per person per day WWR - window wall ratio WPI - water performance index EC - Embodied carbon **EE** - Embodied Energy **OPEX** - Operational Expenditure **CAPEX** - Capital Expenditure AAC - Autoclave aerated cement RCC -Reinforced cement concrete SHGC - Solar Heat gain coefficient VLT- Visual Light Transmission UDI - Useful Daylight Index HVAC - Heating Ventilation and Air Conditioning SOLAR PV - Solar Photovoltaic AC/DC - Alternating Current / Direct current

CGWB -Central Government Water Board

RWH - Rain Water Harvesting

ASDMA - Assam state disaster management authority

VRV - Variable Refrigerant Volume

DOAS - Dedicated Outside Air System

BMS - Building Management System

COP - Coefficient of Performance

BEE- Bureau of Energy Efficiency

PWSS- Pipeline water supply system

NTPC - National thermal Power Corporation

ICE - Inventory of Carbon and Energy

BSRIA - Building Services Research & Information Association

USGBC - United States Green Building Council

5. EXECUTIVE SUMMARY

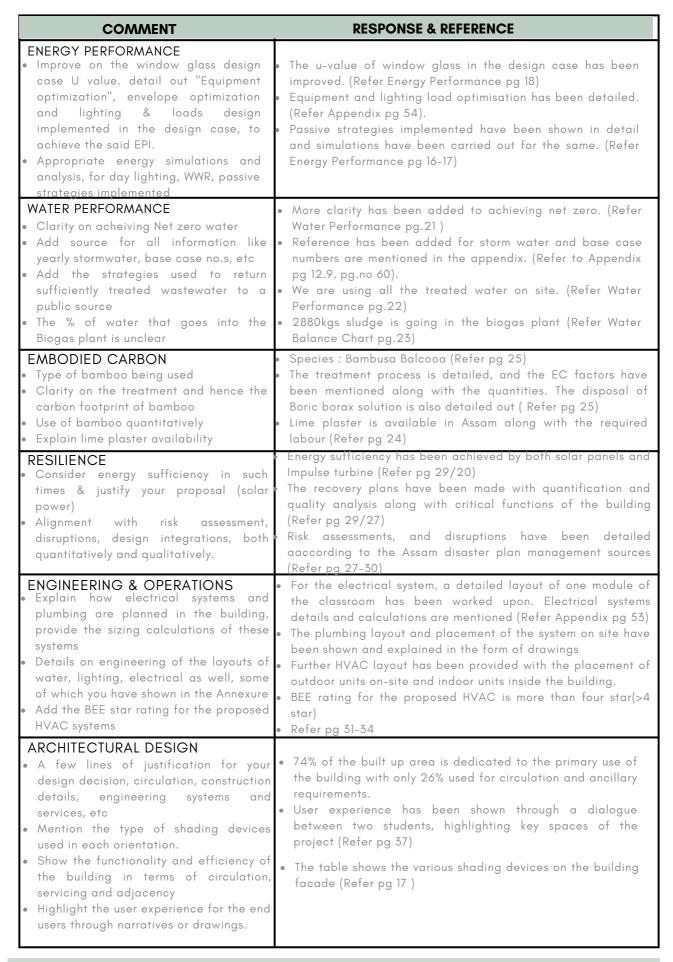
With the global GHG emissions raising the global temperature and making climate change a real threat, the future of life, as we know it, on our planet EARTH stands questionable. The AEC sector is responsible for 30% of total global final energy consumption (Source: International Energy Agency). One of the few ways we can attempt to ensure a safe and satisfactory future for the generations to come is by curating current systems to align with sustainable practices while establishing the importance of the same among the youth.

Our school, **EKĀGRA**, DPS (Delhi Public School) in Nagaon aims to accomplish this very goal. The total site area is 77,054 sqm of which we have proposed phase 1 of the project with a **site area of 43,820 sqm**. Located in the warm and humid suburbs of Nagaon, Assam, the school with an **area of 8072 sqm** is proposed to host **1800 students and 200 teachers and staff**, with the possibility of future expansion. The campus, owned by GYANDEEP FOUNDATIONS works on a build-own-operate model and targets to serve students in Nagaon and its neighboring villages.

While designing the school, our team focused on two primary aspects - one, to design a facility that enhances the sharing of knowledge and ensures productive learning in schools, and two, to make the building a net zero energy, water, and carbon built environment.

A key feature was introduced to the proposal - a Research and Design (RnD) block "*The Vision Wonder*", functioning on the idea of **'YOU RUN THE SCHOOL**', which provides students with hands-on learning from a very young age and introduces the concepts of sustainability that the school is designed on. The RnD block is modular in design, allowing the concept to be replicated and scaled to fit other schools in the DPS franchise and beyond.

The standard EPI for base-case institutions in a warm-humid climate is 150 kWh/m2/yr. Our proposal has an **EPI** of **26.5 kWh/m2/yr**. The EPI ratio of our proposed case is 0.36 where as the maximum allowed EPI ratio for a super ECBC building is 0.77. Renewable energy generated through Solar PV is **222490 kWh** annually, which is sufficient to fulfill the energy requirements. The water requirement has been reduced to **16 lcpd** which is a 63% reduction from 45 lcpd, the recommended amount in NBC 2016. The site has an annual rainfall of **9720 kL/yr**, this water is used to generate power, by an innovative impulse turbine system that generates energy of **3500 kWh** annually.


The embodied carbon emissions per functional unit of the building are **71.9 kg-CO2 e** which is 77% lesser than that of the base case. The building functions have been designed to achieve a net-zero waste status by feeding biodegradable wastes (paper, food waste) into a biogas tank and sending non-biodegradable wastes (plastics) to our industry partners for generating building materials.

One of the major challenges was designing the building for the Seismic V Zone. The building has been designed as a resilience shelter, providing energy, water, and food requirements for four days. Furniture has been designed exclusively to be earthquake resilient. Bamboo and jute partition walls have been designed as internal partitions. Bamboo and other materials have been used extensively to promote the usage of local materials, local labor and reduction of material waste, thereby reducing the project cost.

Comfort levels according to IMAC for mixed-mode schools (16% area is air-conditioned space and 84% area is naturally ventilated), have been achieved. Cooling loads on the south side have been controlled through façade treatment and the mental well-being of the occupants has been paid attention to. Excess glare on the east and west sides has been controlled by reducing the WWR and by adding specially designed shading devices.

The building's internal layout is modular and flexible, which provides a dynamic environment to its users and opens up possibilities for expansion and reuse, which again contributes to a circular built environment. The **total cost of the building has been reduced from 307.32 INR Million (base case) to 266.65 INR Million (design case)** by using local materials, optimizing the foundations, energy and water consumption. This is a 12% decrease from the base case. The proposed building has the potential of additional income streams including leasing out the sports facilities as well as the multipurpose hall.

6. RESPONSE TO REVIEWERS' COMMENTS AGAINST DELIVERABLE 3

COMMENT	RESPONSE & REFERENCE
 AFFORDABILITY Rework on calculations - seem to be off quite a bit. Try stitching together payback periods & ROI's to support your CAPEX' Add the cost implications for your innovations 	 Calculations have been checked and corrected in the costing sheet attached separately The errors in the sheet formulae have been corrected by SDI and the Financing cost and LCC sheets have been connected. Costing for the innovations has been added, as well as ROI calculations for the same (Refer pg 38) Refer D4_EDU_GreenCollars_CostEstimate.xlsx attached
 INNOVATION Follow the 6 points outlined in the documentation requirements Is there a market necessity/ problem that you seek to address, need to be answered Mention things like marketability in addition to this detailed explanation Structure your narrative around the six points listed in Appendix D 	 All the innovations have been detailed following the 6 points mentioned in the documentation requirements. Each innovation is addressing a different problem that is frequently faced in that climatic and geographic region or generally in schools and has been listed separately for each innovation. The marketability of each product has been added to the detailed explanation. Please refer pg.39 onwards for the innovation details.
 HEALTH & WELL BEING How many occupancy hours are comfortable with natural ventilation & what is the comfortable indoor temperature Add simulations What are the design measures to ensure proper indoor air quality & comfort What are the decibel levels it can curtail & how much can it absorb -partition walls Provide references for indoor air quality strategies Show the thermal comfort standards mentioned in the pre-design analysis of your report. 	 the comfortable indoor temperature value have been mentioned in the thermal comfort analysis. (Refer pg 42) All the strategies have been validated through simulations. (Refer pg 42-44) Strategies to ensure indoor air quality and comfort have been detailed further and references have been mentioned Decibel levels and sound absorption values for the acoustic partition walls have been mentioned too. (Refer pg 43) The standard that was chosen for thermal comfort mentioned in the pre-design analysis has been mentioned here as well. (Refer pg 42)
 VALUE PROPOSITION Compelling narrative to the Project Partner, not the end user is required 	• The narrative for the project partner was mentioned in D3, but it was not clear enough. We have refined this and added the narrative for the project partner as well as the end-user (Refer pg 45)

7. TEAM INTRODUCTION

7.a.1 Team Name

Green Collars

7.a.2 Institution(s) Name

R V College of Architecture, R V College of Engineering, R V University

7.a.3 Division

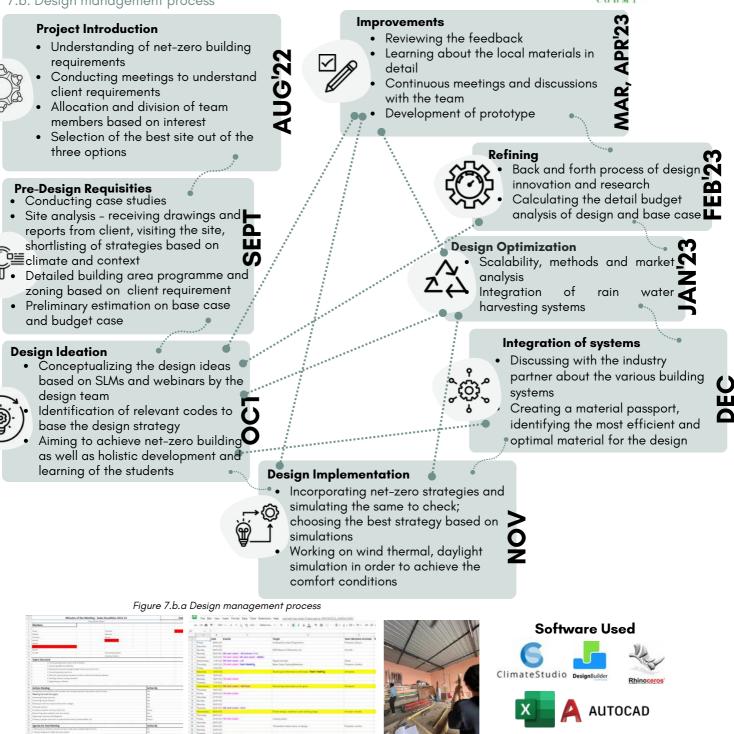
Educational Building

7.a.4 Team Members

Faculty Advisor

7.a.6 Background of Lead Institute

R.V. College of Architecture (RVCA), was established in 1992, as the Department of Architecture in R.V. College of Engineering (RVCE), Bengaluru. In 2014 they shifted to a new campus and function independently, nurturing academics, profession and research for a sustainable contemporary society. The institute offers degree programs for Bachelors and Masters in Architecture.


7.a.7 Industry partners

Zerund bricks is known as a Plastic Embedded Lightweight Brick. It is a patented lightweight brick of Zerund Manufacturing Pvt. Ltd. Industrial production of this building material started in the year 2018 in Guwahati, India. Energy saving and pollution free techniques are used in its production.

CGBMT (Centre for Green Building and Technology)is an Indian NGO working to promote and provide environment-friendly, low-energy and cost effective solutions for sustainable living through advocacy, skill development, education and project execution. CGBMT's goal is to promote a sustainable way of living, working in the sustainable building centre for 15 years in various fields of construction and design.

7.b. Design management process

🔂 SketchUp 🖊 NSYS

Figure 7.b.b Images of design process

Conducting Workshops and discussions

Study archival

8. PROJECT BACKGROUND

8.a. Project Name

Project EKĀGRA – Delhi Public School, Nagaon

8.b. Project Partner

Gyandeep Foundations - Mr. Ashwini Chhawchharia, Vice President

8.c. Brief description of the project

The client proposes to provide quality education for the community at large. Phase 1 involves the School and associated Facilities – Utilities (which we are designing) being strategically planned at one end of the 77,000 sqm site. Some features of the area are:

- The Kolong River, a tributary of the Brahmaputra River, which flows through Nagaon.
- Major crops grown: Paddy, potato, mustard, jute, sugarcane, wheat and other vegetables
- Major occupations: Agriculture, horticulture, live-stock rearing, poultry, fishery

Scope of the Project: Designing a school that facilitates a hands-on learning approach. Incorporating a unique Research and Design lab in the school for students to learn and further their knowledge on sustainability which can become a unique prototype for the DPS franchise.

Location: Deodhar, Nagaon , Assam Latitude: 26°18′14″N Longitude: 92°40′51″E Climate Zone: Warm and Humid Market: Guwahati to Nagaon – 120 Km Status of the Project: Finishing stage

Hours of Operation : 9:00-16:00 (for students) (Monday - Friday , Saturday 8:00 - 13:00) 8:00-17:00 (for staff) (Monday - Friday, Saturday 8:00 - 14:00)

Socio-Economic Background: The distribution of the work forces in the district as per the Census 2001: Out of 727,641 workers 641,273 persons are engaged in the rural sector and 86,368 are in the urban sector.

Profile of Users: Currently planned for 1800 students and 200 staff members. Age group 4 - 18 years

Figure 8.c.a Context plan

PHASE I PHASE II

	SITE AREA	BUILT UP AREA	GROUND COVERAGE	SETBACKS	BUILDING HEIGHT
Assam standards (Permissible)		43820 sqm (FAR =1)*	15340 sqm (35%)*		30 m*
Proposed Case	Site Area for Phase 1 - 43,820 sqm Total Site Area - 77000 sqm	8072 sqm	3340 sqm (detailed explanation given in the Building Area Programme on page)	9 m on all sides	8.1 m

Table 8.c.1 Area Details

For a detailed area program refers to appendix 12.3, appendix table 1, page no.50

*Source: Government of Assam - Orders by the Governor for Urban Development

Figure 8.c.c Site images as of 2nd Feb '23

On-site renewable energy generation:

- The total energy generation through solar panels will be 222400 kWh annually as shown in page 16. EPI of our proposed case is 26.5 with an EPI ratio of 0.36.
- The amount of harvested water we will receive is 9720 KL/yr , which will be used in a impulse turbine system to generate energy as shown on page 22
- The energy generated from the impulse turbine system is 3500 kWh annually detailed on page no. 28, refer appendix pg 72 for further calculations.
- Biogas generated from biomass for cooking is 6075 kg annually as shown on page 27

STRENGTHS

- A multidisciplinary team has helped in wind and thermal simulation
- The team is well-versed in software and simulation
- The team consists of 12 architects who have acquired the knowledge on various building systems, 1 mechanical engineer having the knowledge for mechanics and 1 spatial designer having the knowledge on interior spatial arrangements
- All the team members hold good team spirit with the ability to work as a group efficiently

OPPORTUNITIES

- Local availability of bamboo
- Located on NH37 Easy transportation and accessibility to site
- Abundant rainfall Electricity generation through water is achievable
- Access to Paddy fields, jute mills and bamboo
- Fairly uniform climate
- 2000 occupants
- Due to large site area, the scope of energy generation(solar) is more.
- Rice husk, jute, occupancy Biogas
- Incorporating local materials and labor, in turn raising the economy

Figure 8.c.d SWOT Analysis

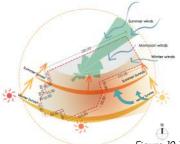
8.e. Special requirements of the project partner

- The building must have a use as a resilience center for the local population
- Achieving at least a 3 star GRIHA rating for new construction
- Universal accessibility of the project
- Self-occupied building

SWOT

ANALYSIS

WEAKNESSES

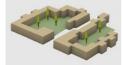

- Lack of structural engineer in our team hence, collaborated with structural engineer professor from the institute and solved the design problems
- Lack of knowledge of bamboo hence, collaborated with Ar. Neelam Manjunath
- Unable to visit the site, hence collaborated with Ar. Abhinav Dilip

HREATS

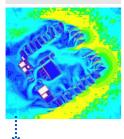
- Earthquake zone site
- High water table
- Flooding
- High Humidity

9. GOALS AND STRATEGIES	¥
 To achieve a net-zero energy building with a target EPI of 30 kWh/sqm/year (GRIHA benchmark = 90 kWh/sqm/yr) (energy generated = 222400 kWh; Achieved EPI = 26.5 kWh/sqm/year) Target reduction of the solar heat gain by the envelope by 50 %. (Achieved - 60%) 	
 To design a Net-zero water building. (Achieved) To have zero water discharge. (Achieved) To treat 100% wastewater on-site and reuse 100% treated water on-site. (Achieved) Target Water Performance Index (WPI) < 45 Lpd (Base value -from NBC). (Achieved WPI = 16.4 Lpd) Ensuring self-sufficiency through storing 11,000 lts of water for daily consumption which provides resilience for 4 days during a disaster 	
 Reducing transport-related emissions by sourcing materials locally (within a 160km radius) Target reduction of embodied carbon emissions to be 50% less than the base case; (Achieved reduction of EC = 77%) The total embodied carbon emissions per functional unit will be less than 120 kg-CO₂e; (Achieved = 70.7 kg-CO₂e) 	
 To provide energy backup that can sustain the facility for a period of 4 days (Achieved) during a disaster Creating a multi-resilience structure(Achieved) Food resilience (Achieved) 	
 Reduce unwanted energy wastage during the operation of building. (Achieved) Material selection based on ease of availability, maintenance and operation. To achieve Net-Zero waste. (Achieved) Provide efficient structural system. (Achieved) 	
 ARCHITECTURAL DESIGN Providing opportunity for students to learn in an open environment, evoke awareness about sustainability and energy efficiency of the campus Enhancing building, and user efficiency and comfort, through design 	
 To design a device to generate energy to utilize the large amount of rainfall on our site with low OPEX. (Achieved- HYDRAWATT Impulse Turbine) Utilize locally available materials to make sustainable acoustic panels and internal movable partitions. (Achieved) Design furniture to facilitate student safety in earthquakes. (Achieved- Safety Prism) 	
 Achieving 100% comfortable operational hours. (Achieved) Target 100% day-lit building during ideal weather conditions. (Achieved: 75% of operational hours) Ensuring good indoor air quality and mental-wellbeing of the students to increase their productivity. (Achieved) 	
 Aiming at OPEX 10% lower than the base case. We have achieved a reduction of 30% in the OPEX and a 12% decrease in CAPEX. To promote the learning approach by the generation of energy. Incorporating a unique Research and Design lab in the school for students to learn. 	in Foundation Costs 38% ↓

10. DESIGN DOCUMENTATION 10.1 ENERGY PERFORMANCE



DESIGN APPROACH


Figure 10.1.a Sun path Diagram

The Building is placed on a higher elevation of the site to avoid water logging & flooding. The main intent was to create an adaptive, interactive playful & comfortable design for the users, by incorporating passive design strategies to achieve a sustainable design

DESIGN ITERATIONS

Flow of wind is obstructed by the building facade

Funnel effect created to capture wind flow, but shows restricted flow at east and west

facades Classroom wings are angled to increase funnel effect, but shows

negative effect on

shows classrooms

at the northern

side to maximize

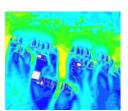
wind flow

conditioned

spaces at

southern end

(.....


iteration

and

the

southern side

Final

ORIENTATION East-West orientation increases ventilation and day light access

CROSS VENTILATION Voids and openings help in effective wind movement throughout the building

COURTYARD

Courtyards in the building, Int provide natural ventilation to to classrooms and corridors led

Building follows setbacks and permissible built up area. Structure built on a porous plinth

Staggering of

large central

courtyard is done to maximize wind movement and

helps in self

classes.

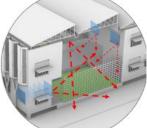
shading of the

ZONING DIAGRAM

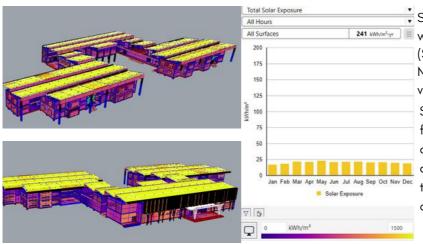
classes and the

*Source: Government of Assam - Orders by the Governor for Urban Develop

for Urban Developme Reducing facade area on east and west enhanced with courtyards and jali walls. Maximizing openings on north for wind & light allowance.


The design constitutes classrooms at the northern side to reduce the cooling loads and maximize

Admin (mixed mode ventilated) R&D block and Labs (mixed mode ventilated) Library (naturally ventilated) MPH (mixed mode ventilated) High and Middle school (naturally ventilated) Pre and Junior school


daylighting of

building

VISUAL INTERACTIVE SPACE Intermediate break out spaces to increase efficiency in learning

Solar radiation for the proposed iteration was observed to be 241 kWh/m2-Year (Software: Climate Studio).

North and west had the lower values varying from 550-750 kWh/m2.

Solar radiation for South and east façade had higher values compared to other two side, values observed were around 100-1200 kWh/m2-Year. Roof of the building had highest surface value of 1750 kWh/m2-Year

Figure 10.1.b Solar Radiation

to reduce the excess glare.

light further (0.7-0.8).

glare.

Window and shading device design

Figure 10.1.c Annual graph showing radiation

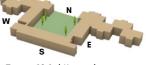
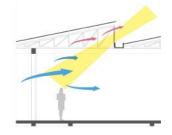
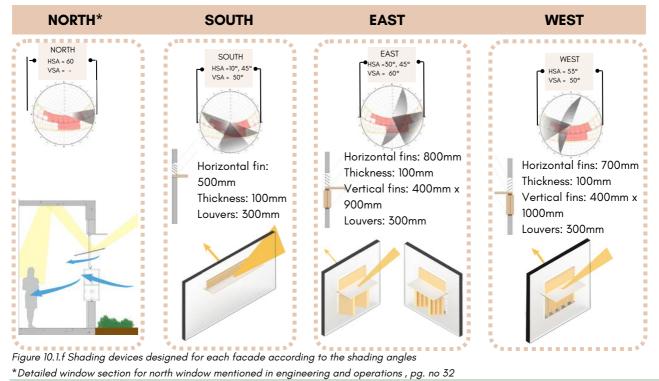



Figure 10.1.d Key plan WWR Ratios

Facade	WWR
North	40%
South	20%
East	10%
West	8%

Table 10.1.1 Window-wall ratios

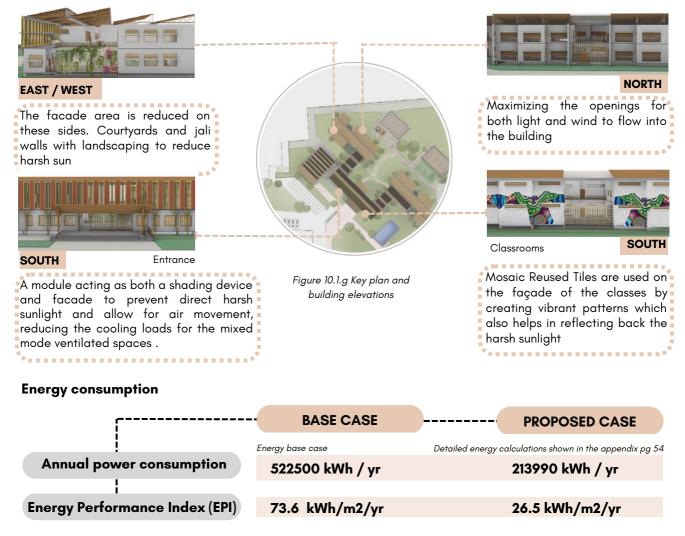
Utilizing the sunlight from the northern side, the first floor is roofed with a north-light truss to optimize the amount of daylight entering the building and improving visual comfort.


The window-wall ratio for each wall has been optimized based on the solar radiation simulation, the opening is maximized on the north to let in more natural light and wind (primary wind direction) while optimizing the east and west openings

On the northern facade, windows on the ground floor and upper floor have been fitted with bamboo louvers which are coated with resin to reflect sunlight into the

building, acting as a light shelf. The ceiling is whitewashed to improve reflectivity of

The landscaping outside the window also helps in reducing the temperature of the wind entering the spaces and offers better views, thus increasing visual comfort. Appropriate shading devices have also been designed for each facade to reduce


Figure 10.1.e Section through north-light truss

The shading devices have been designed very flexibly as rotatable louvers which can double as window shutters as well as light shelves.

The bamboo louvers are coated with stabilized clay mixed with rice husk and lime to increase its reflectivity. This also acts as a plaster and protects it from rain and harsh weather.

The goal set for energy performance was achieving an EPI of 30 KwH/m2/yr. We have achieved an EPI of **26.5** KwH/m2/yr. The approach to the energy efficiency goal is in two steps. The first step to reduce energy consumption is done using passive strategies, derived from pre-design simulations and a design-oriented approach. Passive strategies used include effective zoning, orientation, use of courtyards and shading devices, and building configuration. The following steps further optimize energy consumption.

Envelope optimisation

	Walls	Roof	Windows *
Standard Design	19mm plaster + 200mm AAC+ 15mm plaster U value : 0.41 W/m2-K	200 RCC Slab , screed finish U value : 1.51 W/m2-K	Single glazed 4mm clear glass. U value : 3.6 W/m2-K
Proposed Design	OUTSIDE • 19mm lime plaster + pigment • 200mm Zerund bricks • 40mm air cavity • 6mm cross laminate bamboo mat boards NDISDE U value : 0.28	 OUTSIDE 4mm Bamboo corrugated sheeting 50mm U tone insulation panel 50mm air cavity 4 mm Bamboo corrugated sheeting INSIDE U value : 0.28 	SHGC = 0.47 VLT = 59 % OUTSIDE • Double glazed window with ómm solar control glass + 12mm air gap + ómm clear glass INSIDE U value : 1.4

Table 10.1.2 Showing base case vs design case envelope optimization

*Windows are openable. U value proposed is for the glass which is fixed . As we are proposing for natural ventilation, windows are open most of the time. Window design is detailed out in engineering and operations pg no – 33

Daylight optimisation

Availability of daylight is maximised by using strategies like a narrower floor plate, use of light shelves, use of the north light truss and the use of proper window glazing.

Simulations of UDI in classrooms prove that the classrooms are daylit for **75%** of the year which reduces lighting loads.

Equipment optimisation

Base case	410710 KWh / yr 55%
Design case	184000 KWh / yr reduction

Detailed calculations shown in the appendix pg 55

Comfort optimisation

The major part of the heat gain from openings is catered to,by shading and envelope optimization. Heat gain from other factors is reduced by choosing efficient fixtures and maximizing fresh air circulation.

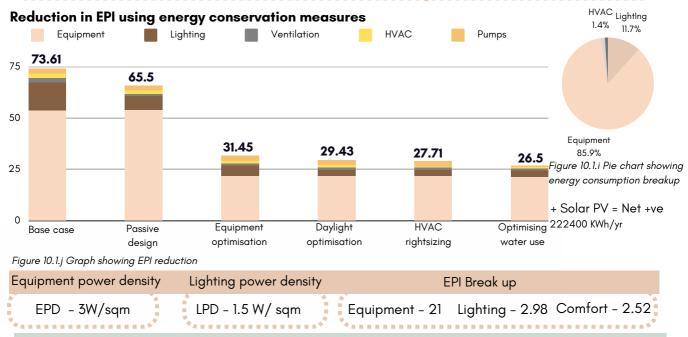
HVAC Rightsizing

The need for HVAC is completely eliminated for almost 84% of the building area by using passive methods such as orientation optimization, courtyards, self-shading, and the use of shading devices. For the 16% of the building area where HVAC is used, HVAC load is optimized taking into account the u values of the envelope, load of equipment and lighting.

Г				
ı	Base case	16505 KWh / yr 🚦	%	A
J		4	reduction	
,	Design case	6070 KWh / yr 🚦	63%	
`		***************************************		

Detailed calculations shown in the appendix pg 58

Setpoints for HVAC



Envelope

Equipment

Lights

Fresh air

Draw prove that the

Figure 10.1.h Showing UDI simulation Source: Design builder software

379260

100255

13640

94440

Usage of energy-efficient equipment and considering the school schedule as operating hours for the equipment, the equipment load is reduced from the base case. The use of staircases rather than lifts is encouraged through design.

staircases rathe	er than lifts is e	encouraged throug	gh design.
	Standard (Btu/hr)	Design case (Btu/hr)	% reduction

150990

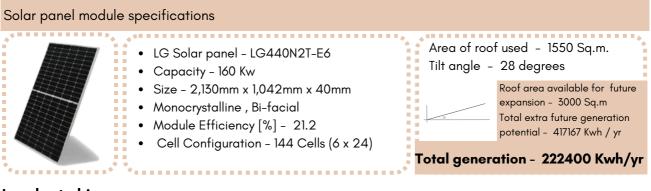
20630

2810

24110

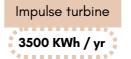
60.2%

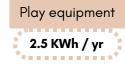
79.4%


79.4%

74.5%

Renewable energy generation


Solar energy generation


The site receives an average solar irradiance of 5.87 KWh/Sqm/day which gives us good potential for solar energy production. Solar panels are placed on 1550 Sq.m of the roof area *tilted at an angle of 28 degrees.*

Impulse turbine

Apart from the solar panels, we are using impulse turbines (refer to innovation, pg.40) to generate energy. As a future proposal, play equipment and outdoor gym equipment are also planned which generate energy.

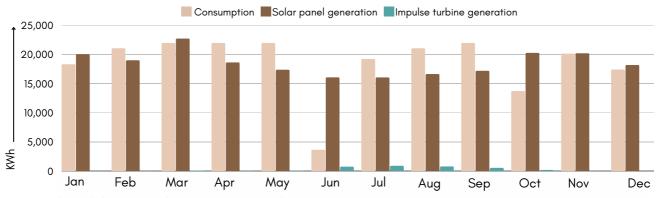
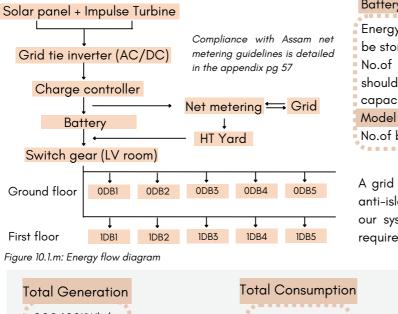



Figure 10.1.k Graph showing annual energy consumption and generation

Grid Interaction System

Battery specifications Energy that needs to be stored - 5900 KWh No.of days batteries should suffice - 4 capacity -250Ah , 12V Model - ILTT 28060 No.of batteries - 20

Figure 10.1.1 Solar panel layout

A grid tie inverter is used in the circuit which has anti-islanding protection i.e , this inverter removes our system from the grid when anti-islanding is required.

Total GenerationTotal ConsumptionNet +ve energy222400KWh/yr-213990 KWh/yr=8410 KWh/yr

10.2 WATER PERFORMANCE

Minimizing water consumption

The indoor water consumption was brought down to **16.27 lcpd from 45 lcpd (as per NBC) base case** for the normal functioning of the school, We have also achieved a **79% reduction** from the GRIHA base case of **80 lcpd** for institutional buildings by using **efficient fixtures** such as sensor faucets, flush-less urinals, composting wcs front load washing machine, efficient water supply system, and efficient cleaning machines.

Water consumption has been further reduced by using the VRV system for air conditioning which **does not require cooling tower** water demands.

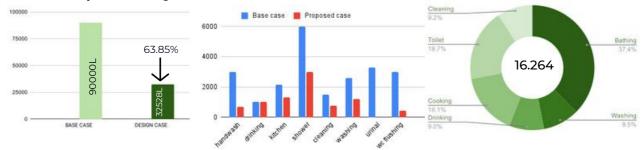


Figure 10.2.a: Base case vs design case water consumption per day during normal scenario for **2000** people as per NBC

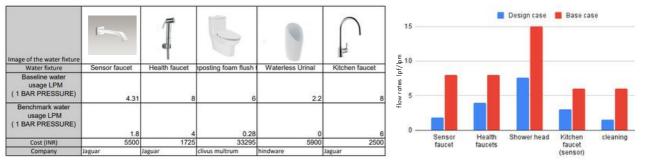


Table 10.2.1: Showing efficient water fixtures

Figure 10.2.c: Base vs Design case flow rate comparison

Figure 10.2.b: Total reduced water demand per

For further calculations refer to appendix 12.9, table 15,16,17, page no. 60 Reduced usage would also depend on the habits of the students using the space, which we hope to enhance

day per person

with the help of interactive visual displays installed throughout the building. The displays would make the students aware of water consumption and encourage them to not waste or overconsume water, resulting in reduced usage. For further understanding refer to appendix 12.2, pg no. - 48

During construction

Proposed best practices

- Use of Zerund bricks for walls that do not require curing
- No internal plastering of the walls saves on the 14-day curing period for plastering as compared to the base case.
- Water reducing admixtures are used
- Use of bamboo truss system for the first-floor slab as compared to base case rcc slab
- MPH built of bamboo saves a lot of water during construction as compared to the RCC base case, treatment water of bamboo is being reused for the foundation
- Use of collected rainwater in the sedimentation tank for construction purposes saves freshwater demand.

Outdoor water use reduction

We have reduced the outdoor water demand for irrigation to 3kL from the base case demand of 10.2kL per annum. This amounts to a reduction of irrigation water demand by 70.52%. The strategies used for this reduction include the use of efficient irrigation systems like drip irrigation and sprinklers, planting only native trees and plants to avoid unnecessary demand for water as much as possible.

DESIGN DOCUMENTATION

The main source of water is Treated Rainwater, and treated wastewater. The average annual rainfall is **1541mm** as per CGWB. According to the climate change data, there is an increase in the precipitation in this region, therefore providing us with surplus rainwater which is stored on-site, making it a **net zero water building** without relying on municipal supply. The treated water is further used for landscaping and flushing . The provision is given for the nearest municipal supply source no. 218 in Deodhar Gaon, Sadar, PWSS

Effective rain

(mm)

565

495

347

127

15

6

11

25

60

33

280

470

Rainfall (mm)

570

500

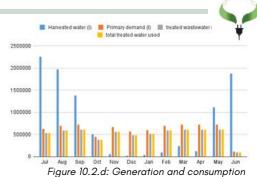
352

132

20

11

16


30

65

38

285

475

For further calculations refer to appendix 12.9 , table 18, page no. 60

Runoff coeff

0.85

0.75

0.3

Liters/day

15.14

1.7

0

4700

0

0

2000

0

137500

- 100% of occupants' demand is met by RWH.
- 100% of on-site demand is catered by filtered grey and black water used in flushing and irrigation including organic farming and bamboo plantation.
- 100% on-site water is treated

Table 10.2.2: Harvested water

Months

July

August

Septembe

October

November

December

January

February

March

April

May

June

total

total in KI

Table 10.2.4: Water consumption

Table 10.2.3: Catchment area

Area

Quantity

Water harvestin

Roof Surfaces

Hardscape areas

Softscape areas

Effective catchment

Water consumption

Occupants : {People

Irrigation (max) : {m2

Cooling tower (max)

Sources

point

x 1/m2}

x l/person)

{Ton x I/Ton}

Harvester

rainwater (

2257175

1977525

1386265

507365

59925

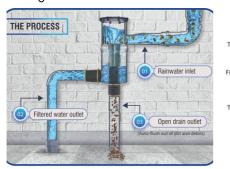
23970

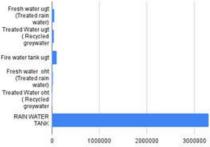
43945

99875

239700

131835


1118600


1877650

9723830

9720

The catchment area on the roof receives rainwater. This water goes through a rainwater harvesting filter which automatically flushes out dirt and debris. The harvested water is stored in storage tanks for immediate usage. This water is used in drinking fountains, kitchen sinks, and washbasins. Stormwater falling on the ground is taken through bioswales and takes its natural course of infiltration.

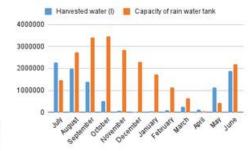


Figure 10.2.f: fl- 500 rainy filtration system

Figure 10.2.e: Tank sizing For further calculations refer to appendix 12.9 , table 22, page no. 61

Resilience in water supply

In an event of water supply failure, the building has enough storage of water to manage the essential services. The building will have enough water for all its needs for 4 days. The daily demand of the building is met through filtered rainwater and recycled water. The total freshwater requirement for a day is 32530L. We have installed a fire water tank of capacity 210KL. The over flow of which goes to 1.5 day fresh water UGT and further to 0.5 day fresh water OHT.

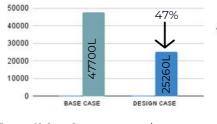
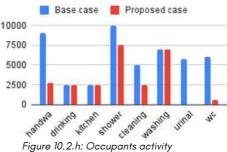



Figure 10.2.g: Base case vs design case water consumption per day during disaster times for **500** people

With the usage of efficient water fixtures the water consumption has been brought down from **95.5lpd to 50.5lpd** during disasters.

For further calculation refer appendix table 19,20,21 ,pg . no 61

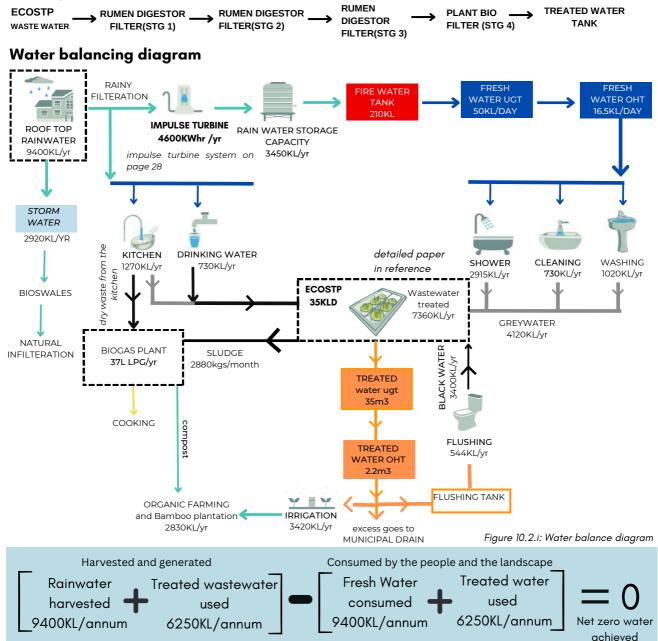

Month	Days in month	Generated black water(I)	Generated Grey water(I)	total generated waste water(I)	treated wastewater (L)	Irrigation seasonal factor (%)	Irrigation demand(I)	irrigation demands for organic farming and bamboo plantation(I)	flushing demand(l)	total treated water used	Cooling tower water demand (I)
Jul	21	279787	356093	635880	540498	0.2	98175	433363	8960	540498	0
Aug	23	306434	390006	696440	591974	0.2	107525	432929	51520	591974	0
Sep	24	319757	406963	726720	617712	0.2	112200	451752	53760	617712	0
Oct	15	199848	254352	454200	386070	0.5	175312.5	177158	33600	386070	0
Nov	22	293110	373050	666160	566236	0.5	257125	259831	49280	566236	0
Dec	19	253141	322179	575320	489022	0,5	222062,5	224400	42560	489022	0
Jan	20	266464	339136	605600	514760	1	467500	2460	44800	514760	0
Feb	23	306434	390006	696440	591974	1	537625	2829	51520	591974	0
Mar	24	319757	406963	726720	617712	1	561000	2952	53760	617712	0
Apr	24	319757	406963	726720	617712	1	561000	2952	53760	617712	0
May	24	319757	406963	726720	617712	0.5	280500	283452	53760	617712	0
Jun	4	53293	67827	121120	102952	0.5	46750	9162	47040	102952	0
total	243	3237538	4120502	7358040	6254334		3426775	2283239	544320	6254334	
total in KL		3240	4120	7360	6250		3420	2285	545	6250	0

Table 10.2.5: Treated water generation and consumption

ECO STP - It is an eco-friendly sewage treatment system that uses anaerobic bacteria. It requires zero power, zero chemicals and produces zero odor. It has lower maintenance as compared to a regular STP.

Treated waste water = 6250 kl /annum with an efficiency of 85%

total Irrigation demand = 6250kl/annum

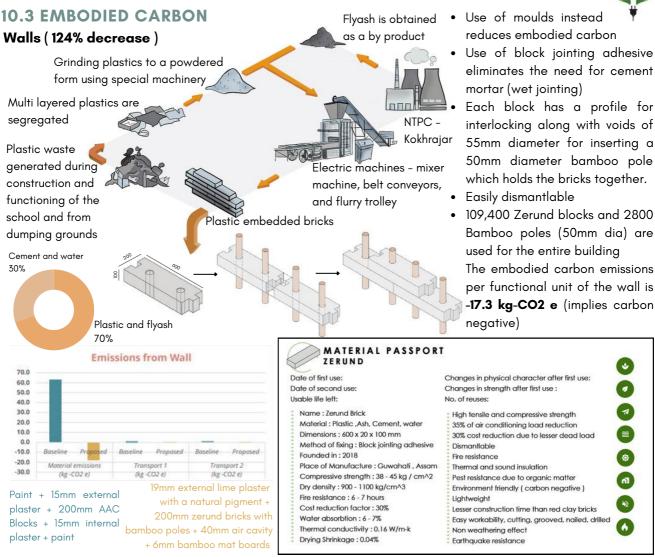
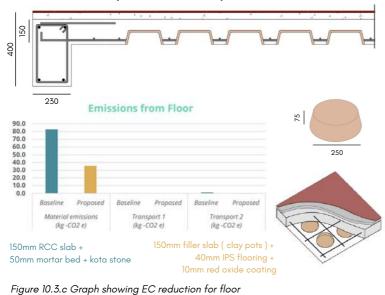


Figure 10.3.a Graph showing EC reduction for wall

Figure 10.3.b Showing Zerund brick material passport

The external walls are made using the Zerund blocks with circular voids for the bamboo poles. 5340 sq.m of the bamboo mat board is used throughout the building for internal cladding of the external walls. The walls on the south facade are lined with pieces of mosaic reclaimed from nearby sites. Lime plaster is used for the external plastering, the labor required is available


۲

0

7

0

Floor and slab (58% decrease)

FINAL REPORT | SOLAR DECATHLON 2022-23 | GREEN COLLARS

The flooring comprises a 40mm IPS flooring with a 10mm red oxide mix. Natural oxide pigments are added to get the desired color. The flooring is durable, cost-efficient, and easy to maintain.

The embodied carbon emissions per functional unit of the floor are 35.4kg - CO2 e

The filler slabs are made using local terracotta pots, ACC Ecomaxx concrete, and steel reinforcement. The clay pots are made using red/brown soil, ash powder, and water. The use of clay pots results in a 30% reduction of slab concrete, promotes the local industry, and adds aesthetic value to the space.

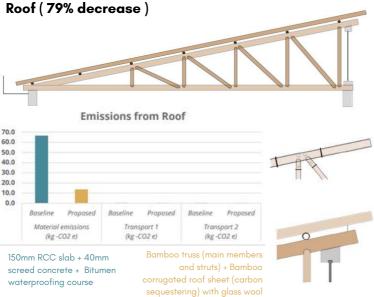


Figure 10.3.d Graph showing EC reduction for roof

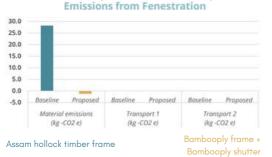
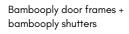
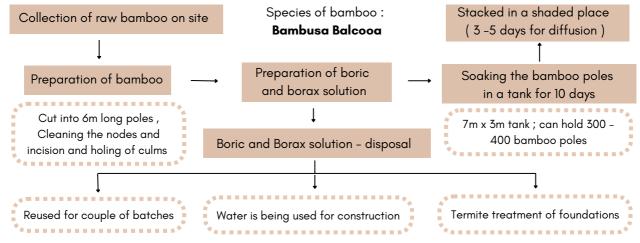


Figure 10.3.e Graph showing EC reduction for fenestration



louvres 50mm Chajja -Bamboo + Stabilized clay mixed with rice hask + lime



Bamboo louvres + Double glazed window with 6mm solar control glass + 13mm air gap + 6mm clear glass

- The Northlight truss members are entirely made using bamboo hence it is carbon sequestering.
- The members of the truss are of three lengths: 6m, 7.5m, and 9m, and of 140mm and 75mm diameters. 175 such trusses are used.
- Bamboo is treated onsite and the truss is fabricated onsite, hence reducing the transport emissions in comparison to using a prefabricated truss. Fishmouth joints are used hence eliminating the need for gusset plates.
- Brushbond-coated bamboo corrugated sheets are used as sheeting material along with glass wool insulation.
- Manual labor for truss fabrication instead of concrete pumps for casting the final roof (like in the base case) resulted in a further reduction of EE.
- The embodied carbon per functional unit is 13.8 kg - CO2 e
- The louvers are made using beaten bamboo and are treated on-site. Stabilized clay mixed with rice husk, bamboo fibers and lime is used for the chajjas.
- The doors are made using Bamboo ply. The total quantity of bamboo ply used is 300 sqm.
- The embodied carbon per functional unit is -1.1 kg CO2 e, this implies that it is carbon sequestering.

Bamboo used for fenestrations , roofing , wall cladding , furniture , partitions

The extensive use of locally available bamboo has led to incorporating a bamboo plantation as part of our design. These grow rapidly and can be harvested in a span of 3 to 5 years. It releases 35% more oxygen than an equivalent stand of trees. Further, it also helps to sequester carbon dioxide and maintain a healthy environment for the users.

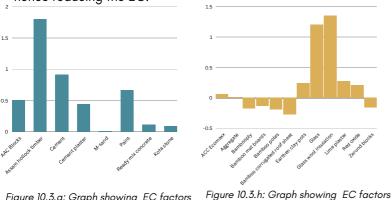
Structure - Columns and Beams (47% decrease)

concrete + steel

reinforcement



Figure 10.3.f Graph showing EC reduction for structure


- The main structure; columns, beams and foundation is made using RCC. The concrete used is ACC Ecomaxx green concrete which has 45% lesser embodied carbon compared to ready-mix concrete , hence even though the transport emissions are a bit higher than the base case transport emissions, ACC Ecomaxx concrete was chosen.
- ACC Ecomaxx uses fly ash, recycled concrete aggregates and aluminium can fibres. It is used along with steel reinforcement
 Since the site falls in earthquake zone V the structure is built

Concrete + steel reinforcement

• The embodied carbon per functional unit is **39.8 kg-CO2 e**

without any compromise on the strength.

Since isolated footing was opted instead of pile / raft foundation , the amount of excavation was reduced hence reducing the EC.

MATERIAL	SOURCING DISTANCE (KM)		
AAC Blocks	30		
Assam hillock timber	25		
Cement	6		
Cement plaster	6		
M-sand	12		
Paint	9		
Ready mix concrete	35		
Kota stone	35		
ACC Ecomaxx concrete	158		
Aggregate	30		
Bambooply	67		
Bamboo mat boards	112		
Bamboo corrugated roof sheets	148		
Earthen clay pots	6		
Glass	12		
Glasswool insulation	51		
Lime plaster	10		
Red oxide	6		
Zerund Bricks	112		

Table 10.3.1: Material sourcing distances -

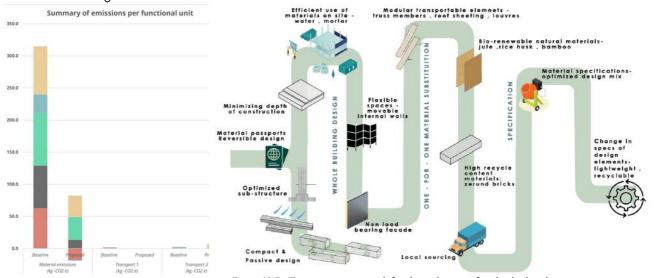

designcase and basecase

Figure 10.3.g: Graph showing EC factors - base case

• The EC factors have been taken from ICE (BSRIA guide)

- design case

All the materials have been sourced from a 160km radius around the site , these materials are considered local according to USGBC LEED V.4

Wall Roof Floor Fenestration Structural

Figure 10.3.i Three stage approach for the reduction of embodied carbon

		Base	line		Proposed			
System Type	Material emissions (kg-CO2 e)	Transport 1 (kg-CO 2 e)	Transport 2 (kg -CO 2 e)	Total (kg -CO 2 e)	Material emissions (kg-CO 2 e)	Transport 1 (kg-CO ; e)	Transport 2 (kg ·CO 2 e)	Total (kg-CO ; e)
Wall	62.7	1.2	0.7	64.6	-17.6	0.0	0.3	-17.3
Roof	66.2	0.3	0.2	66.8	13.6	0.0	0.2	13.8
Floor	82.6	0.3	1.3	84.2	35.3	0.0	0.2	35.4
Fenestration	28.2	0.0	0.1	28.3	-1.3	0.0	0.1	-1.1
Structural	75.2	0.0	0.1	75.3	33.6	0.0	6.2	39.8
		Grand Total emission Init (kg -CO 2 e)	s per functional	319.2		Grand Total emission unit (kg -CO 2 e)	s per functional	70.7

Table 10.3.2 EC reduction in emissions per functional unit Refer to appendix page 64-65 for detailed calculations

77% reduction in embodied emissions per functional unit in comparison to the base case

10.4 RESILIENCE

SITE - The site is a multiple hazard zone prone to earthquakes and floods (including water logging) Earthquake Resilience: Nagoan, Assam lies in Zone V(as per IS 1893, 2016 code)

Flood Resilience: The area is subjected to frequent flooding by rivers for 4 months a year. The average annual rainfall between June and September is 1,560 mm. Reference- http://sdmassam.nic.in/

MULTI HAZARD RISK ASSESSMENT

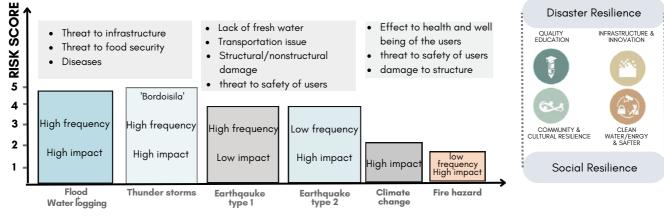


Figure 10.4.a: Graph showing frequency and impact of various hazards onsite

CRITICAL FUNCTIONS OF THE BUILDING-

CRITICAL FUNCTIONS	FLOOD	EARTHQUAKE(type 2)	THUNDERSTORMS	FIRE	1.ENERGY EFIFICIENCY -
Lights	✓ 50%	✓ 50%	✓ 50%	✓ 50%	The total energy that needs
Ceiling fans	\checkmark	~	~		to be stored for
Sockets	✓ 15%	✓ 15%	✓ 15%		withstanding 4 days of
Communications(Fire Alarm, CCTv)	~	~	~		pandemic- 5900KWh
PHE	~	~	~	~	'
Cooking(Refrigeratror, Induction)	~	~	~		(achieved).
First responder medical equipment	~	~	~	\checkmark	
ENERGY REQUIREMNT DURING HAZARDS	1600 KWh	1500 KWh	1700 KWh	1300 KWh	
Number of days	4	3	4	3	

Table 10.4.1 Matrix of building systems (energy required during hazards stored at site)

For detailed calculation refer appendix 12.8, table 12,13,14,15 - pg 59

2. WATER RESILIENCE

occupants activity	Proposed case				
	quantity in I/person/day	Quantity in Its for 500 people for 4 days			
handwash	5.4	2700			
drinking	5	2500			
kitchen	5	2500			
shower	15	7500			
cleaning	5	2500			
washing	14	7000			
urinal flushing	0	0			
wc flushing	1.12	560			
total	50.52	101040			

Table 10.4.2 Water requirements during disaster

3. FOOD RESILIENCE

or 900 people			
Type of cylinder Commercial 19kgs			
1.2 cylinders/day 22.8kgs/day			
ood / Earthquake)			
be catered	7		
Amount left after comsumption/day			
Amount (kgs) saved per/month			
Amount saved for 3 months			
Number of people catering			
Biogas used per/day			
Number of days sufficing during disaste			
	Commercial 19kgs 22.8kgs/day ood / Earthquake) be catered comsumption/day ed per/month 3 months catering ay		

Table 10.4.3 Biogas requirement during disaster

ORGANIC FRAMING

COMPOST FROM		Table 10.4.4 Compost requirement for 300sqm field
BIOGAS (Kg/day)	(Kg/year)	Reference-https://mcgillcompost.com/compost-
195 kg/day	75,000 kg/year	calculator/

An organic farming method has been used to grow vegetables and fruits. The compost requirements per year have been met by biogas waste and the excess compost is given to the farming community & also used for bamboo plantation on site. Crop rotation and mixed farming techniques are used to increase production. To keep the vegetables fresh, the refrigerated space of a heat pump

is used for cooling which takes 7mins to cool down 8 cubic meter of space. resilience is achieved

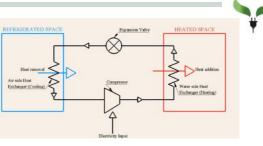
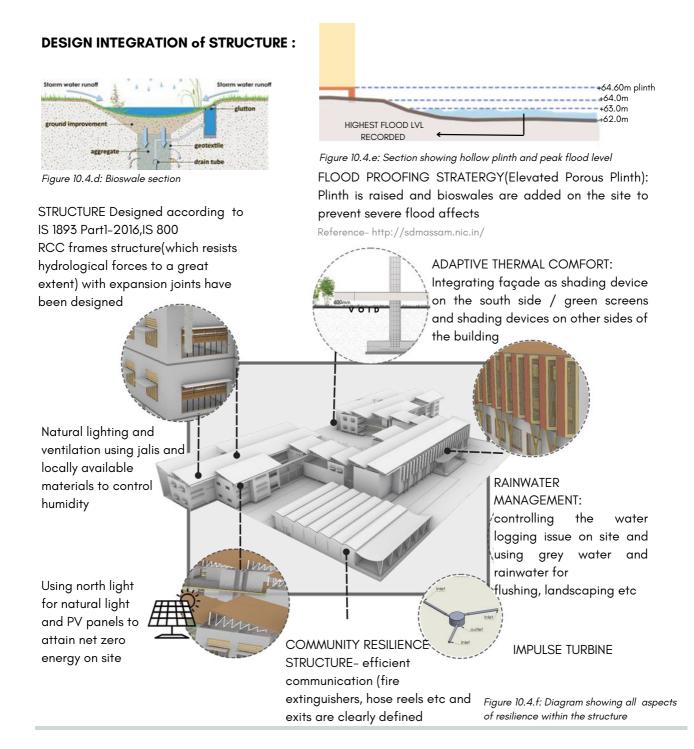
HEAT PUMP USED AS REFRIGERATOR :

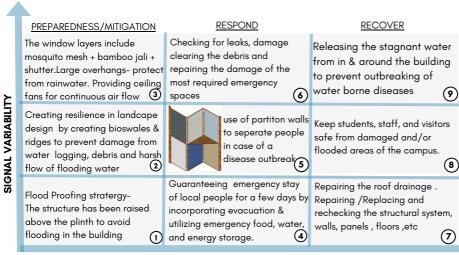
Nominal Capacity of Heat Pump = Heat delivered to Water = 40kW

Power input = 8.5kW

Heat absorbed/removed from Refrigerated space = 31.30kW Thus, the time required to raise the temperature of 1000L of

water by 30 degrees = 1 hour approximately


Figure 10.4.c: Heat Pump

Since the refrigerator needs to be operational for 24hrs a day, the 1 hour of operation is split into 3-minute intervals of operation per hour, which is further split into six 30-second intervals. This ensures that the refrigerated space remains cool while the water is also heated.

In addition, from calculations, it takes the air in the refrigerator roughly 8-10mins to heat up by 5 degrees, and thus, the 30s intervals of burst operation are sufficient to maintain the required temperature range. Extra energy is being stored in batteries.

FLOOD RESILIENCE -

FLOOD /WATER LOGGING RECOVERY PLAN

Figure 10.4.g: Diagram showing flood resilience The complete school and MPH Structure will act as a community resilience centre. It can cater to up to 500 people (with beds)

within a radius of 1-2km around the site

EARTHQAUKE RESILIENCE -

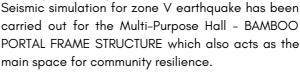
SIGNAL VARIABILITY

14 beds / CLASS Total classes =42 Total beds = 588-600 -Considering the highest level as 61m above sea level(Assam Disaster manaament Authority), the site is located at 64m above sea level and plinth of 600mm is provided for extra safety.

-At vulnerable points in structures like the services, cables etc. are also located above plinth level and are coated & sealed with water resistant sealants.

-Shelter for livestock is also present in the site above the rain water tank, made of bamboo (temporary structure)

POST-PANDEMIC PRE-PANDEMIC


Figure 10.4.h replacing of benches with beds during disaster RESPOND RECOVER PREPAREDNESS/MITIGATION Help the community recover from Only the MPH structure will act In case of fire outbreak the Clearing the debris and disaster educate them for the construction materials – exterior repairing the damage of the as a community resilient reconstruction of their homes , walls have fire rating of 6-7 hours most required emergency help them rebuild the community structure during high impact and internal upto 2-3 hours spaces $(\mathbf{3})$ 6 back (9) and/or high frequency hazard Building catering to 500 people Instantly providing required Managing the basic events. requirements of the occupants. including the community around emergency services and Earthquake Building Type-Repairing the additional with 5 days of amenities managing the health & wellfacilities like W/C's , available - Community RCC framed structure with being of the occupants 2 (5) communication systems, etc. (8) Resilience shelter expansion joints makes Repair restore electrical. STRUCTURE Designed "EARTHQUAKE - DROP" students resilient to high frequency, low mechanical appliances which can according to IS 1893 Part 1should immediately take cover cause harm. Keeping the Fire exits impact earthquakes. 2016,IS 800 and expansion under desks or tables clear & allowing movement of joints are designed in places and turn away vehicles into the site for rescue7(1) from the windows. (4) required

EARTHQUAKE RECOVERY PLAN Figure 10.4.i: Diagram showing earthquake resilience

SEISMIC SIMULATION- high frequency low impact earthquake

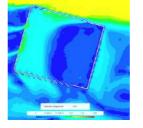

y = 0.0000 cm, z = 0.0000 cm Stress = -275.7654 MPa Figure 10.4.j Results of seismic simulation

Figure 10.4.k: Bamboo portal frame structure for MPH Figure 10.4.l Wind simulation for the MPH

Detailed calculations have been mentioned on pg-44 (appendix)

MPH works as a mixed mode ventilated space

it

SCAN HERE! (simulation video)

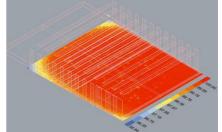


Figure 10.4.m Daylight simulation for the MPH

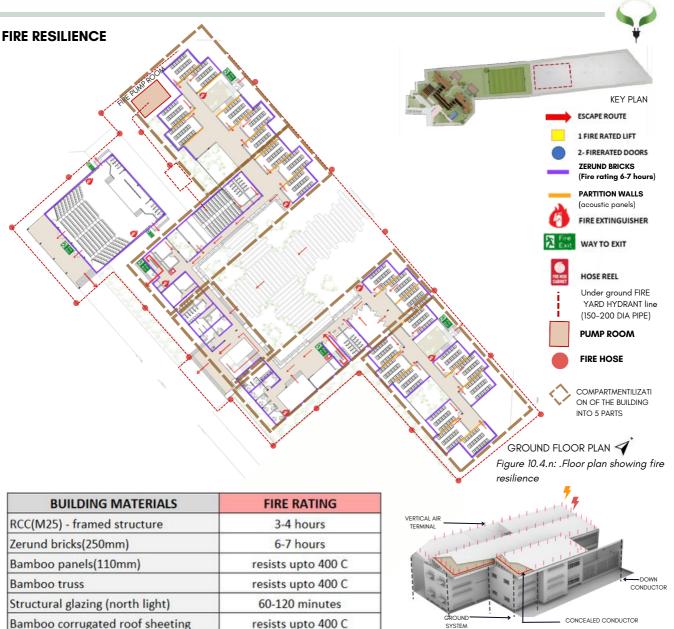


Table 10.4.4 Fire rating of the major materials used in construction

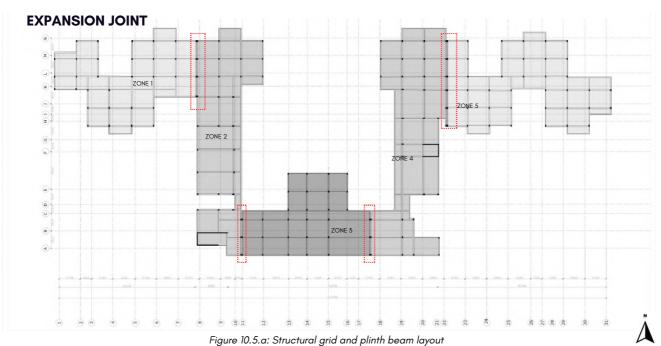
The type of constrution according to fire resistance- TYPE 1 construction (NBC)

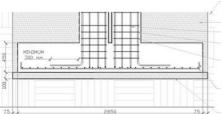
CLIMATE CHANGE RESILIENCE -

Building protection against lightning during a thunderstorm called 'Bordoisila' which occurs every year before the start of the monsoon carrying heavy winds/rains/thunder/lightning

Deriving the trend line from the existing data for the next 15-20 years of the building. As seen in the graph the temperatures increase, hence the building has been designed accordingly

As the humidity is decreasing and the rainfall is increasing, bioswales and drainage systems have been put in appropriate locations to prevent debris blockages and backflow of water. The excess water is going to be used for future expansion.

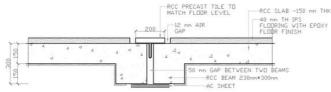

Figure 10.4.o: Trend lines for rainfall, temperature and humidity

https://weather-and-climate.com/average-monthly-Rainfall-Temperature-Sunshine,guwahati-assam-in,India

The solar panels can also be added on the roof of the existing building for more power generation on the site during the future construction-3000 sq.m area is available (Extra energy produced would be 417160 KWh/year)

10.5 ENGINEERING AND OPERATIONS

-EARTH REFILL -EARTH -EARTH -E00 - EXTRA REINFORCEMENT -E00 - MAIN REINFORCEMENT -TIES 80 @ -TIES 70 ~ -TI


BOTTOM MAT REINFORCEMENT 120 @ 120 mm C/C BOTH WAYS PCC BED

The site is located in Seismic Zone 5 and due to frequent flooding, the building has been divided into **FIVE ZONES** with 4 expansion joints (marked in red lines) in between for a safer structural system. Also, the building spans a large distance which might cause cracks due to uneven settlement of the earth. A gap of 50 mm is given between the two structural members.

16¢ -MAIN RELEVENDED TIES 8¢ @ 100 C/C NEAR SUPPORTS 200 c/C MID HEIGHT

EXPANSION JOINT -FOOTING DETAIL

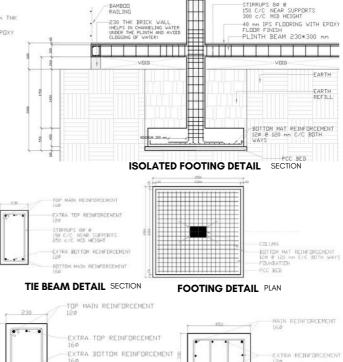
SECTION

EXPANSION JOINT -BEAM DETAIL SECTION Figure 10.5.b: Details of expansion joint of footing and beam

STRUCTURE

Tie Beam

Slab Thickness : 150mm


Footing size : 2500mm*2500mm

All calculations are done manually, keeping in consideration the site constraints (Seismic Zone 5, flooding and high water table). The design of structural members is in compliance with IS-456. For loads, IS-875(Part 1 and 2) was used as a reference. Loads considered for Live load – 5 KN/m2 and the dead load was considered as 5 KN/m2.

The provision of a Plinth beam, lintel beam and tie beam adds extra strength to the structure to withstand earthquakes.

: 230mm*450mm

Span for structure - 6000 mm * 5000 mm After detailed calculations, the sizes of structural members have been fixed. Details are mentioned below Column : 300mm*450mm Plinth Beam : 230mm*300mm

PLINTH BEAM DETAIL SECTION

Figure 10.5.c: Details of isolated footing ,tie beam, plinth beam and columns

COLUMN DETAIL PLAN

MAIN REINFORCEMENT

HVAC


For HVAC, a **VRV** (Variable Refrigerant Volume) system with a **DOAS** (Dedicated Outdoor Air System) was chosen for its efficient performance which requires less space compared to a chiller system and gives access to control temperature at individual zones. In addition to that, the VRV systems can be integrated into the BMS (Building Management System) for efficient energy consumption. As Assam has high humidity, DOAS helps in reducing the dew point and dehumidifies the space which in turn helps the VRV system to work more efficiently.

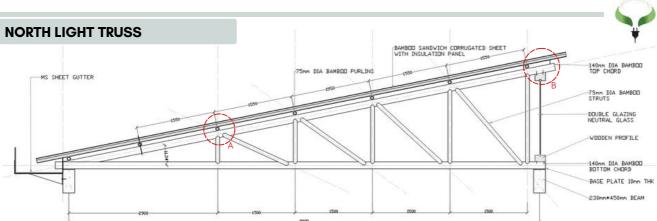

The chosen VRV system has a **COP value of 3.67**. This means for every 1kW of electricity input, the VRV system produces 3.67 kW of Cooling. Due to this, the HVAC system is energy efficient.

Figure 10.5.d: Section through Seminar to show placement of equipment

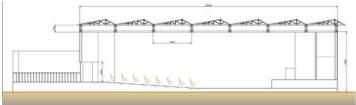
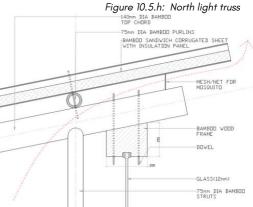
DOAS sufficiently dehumidifies and tempers the outdoor air to meet both the latent load and the ventilation requirements for all spaces served by the system. (Refer Appendix table 11 on page 58 for detailed explanation on right sizing of HVAC).DOAS outdoor units are placed above the toilet blocks of building as shown in Figure 10.5.d.

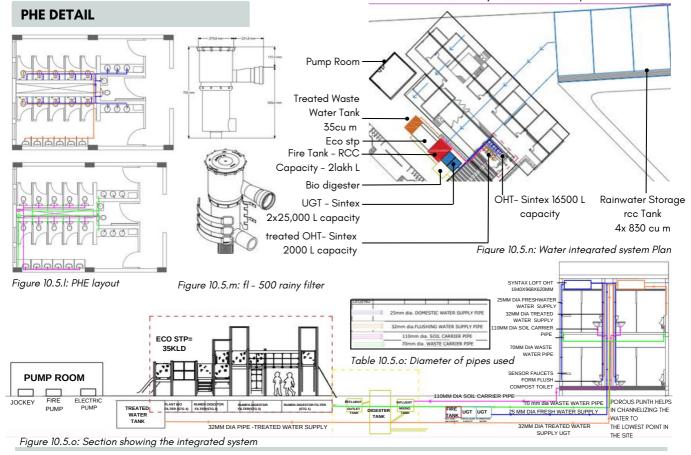
DESIGN DOCUMENTATION

STRUTS county county

Figure 10.5.i: DETAIL - A (close up detail of fish mouth joint for top chord and struts)

MPH DETAIL


Figure 10.5.k: Section through MPH

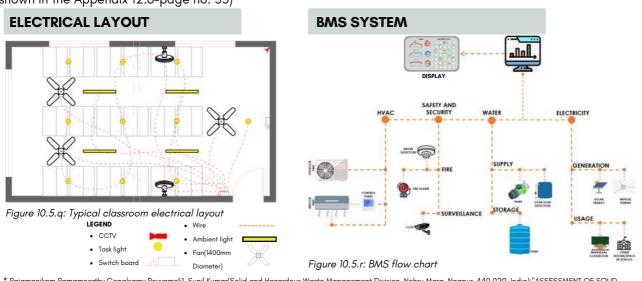
SECTIONAL ELEVATION -BAMBOO NORTH LIGTH TRUSS DETAIL

Figure 10.5.j: DETAIL - B (close up detail)

A small opening has been created between the roofing material and the top cord, which allows the hot air to exit through the passage(as shown in the red dotted line). To avoid insects to come into the classrooms, a mesh system has been provided

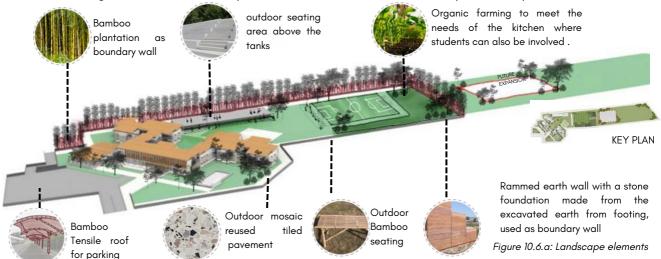
FINAL REPORT I SOLAR DECATHLON 2022-23 I GREEN COLLARS

SOLID WASTE MANAGEMENT


As per Assam Urban Solid Waste Management Policy Report(2018), Nagaon generates about 48 metric tons of waste per day. Disposal of this waste is a serious problem at various levels (Micro to Macro). The school is a place where we could help teach students about how effectively we can manage the disposal of waste and induce the knowledge of effective reuse thereby achieving a net zero waste school

A special **R & D Block** (Research and development) can help students with hands-on experience to practice converting waste into innovative products thus bringing in a sustainable thought process in students.

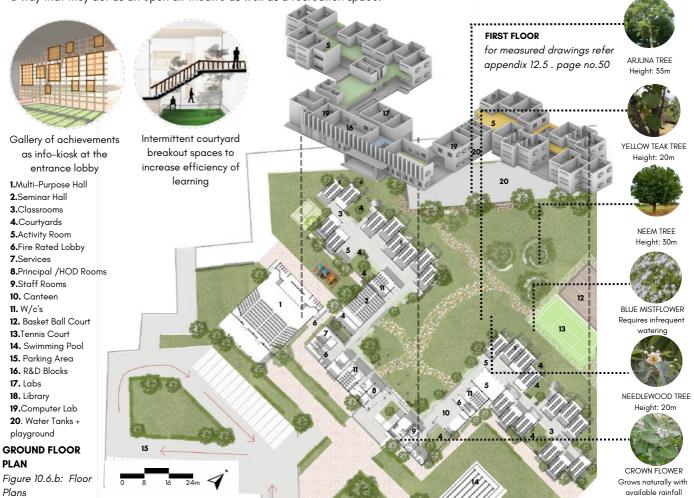
- Provision of waste bins in all individual spaces to avoid littering and proper waste management could be maintained.
- Nets/mesh under major big trees for ease of collecting them for composting
- Reuse of academic textbooks by passing them on to juniors, thus reducing paper wastage.


As per research based on (*)Solid Waste generation and Management in Schools, Puducherry, schools on average generate 0.092 (±0.025) Kg/per capita/day. As per the area program, our school accommodates 2000 people (1800 students and 200 staff), so the total waste generated is around **184 Kg/per day**. Further, the research suggests that 0.047 Kg/per capita/day of total waste is **Biodegradable**, which means **94 Kg/per day** of solid waste could be used for Composting and Bio-gas. With respect to plastic, the school will be generating **14 Kg/day** of plastics which could be utilized for producing ZERUND bricks. (Detailed tables for values have been shown in the Appendix 12.6-page no. 53)

* Rajamanikam Ramamoorthy, Gopalsamy Poyyamolii), Sunil Kumar(Solid and Hazardous Waste Management Division, Nehru Marg, Nagpur-440 020, India);"ASSESSMENT OF SOLID WASTE GENERATION AND MANAGEMENT IN SELECTED SCHOOL CAMPUSES IN PUDUCHERRY REGION, INDIA"-2019; Published in Environmental Engineering and Management Journal

10.6 ARCHITECTURAL DESIGN

The vision for our green school is to create a sustainable, healthy, resilient, dynamic, inclusive and innovative learning environment that inspires students and staff to make a positive impact on the world.


The school has been divided in three zones. The admin along with R&D lab and the other labs are designed in such a way that they form the brain of the building, overlooking the entire school. A double height library space surrounding the courtyard provides a favorable reading environment and visual connections. The two wings of the classrooms are facing the wind, north light as well as opening out to the outdoor views. The activity room at the junction becomes an extension to the corridor, keeping it flexible in use. The internal courtyards become the extension to the corridor hence becoming pause points for various get togethers. The corridor around the central courtyard gradually merges with the landscape reducing thermal shock. The staggering of the classrooms creates these nooks and corners for students to get together. Rainwater tanks are designed in such a way that they act as an open air theatre as well as a recreation space.

FICUS TREE Height: 30m

WATER WILLOW Requires infrequent watering

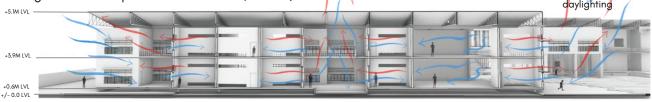
DESIGN DOCUMENTATION

Figure 10.6.c: View of sports field

SPORTS FIELD

Proposal to rent out the football field and basketball courts to sports authorities for conducting national level competitions, for other schools in close proximity and can be used as a training/coaching camp for athletes residing near the campus

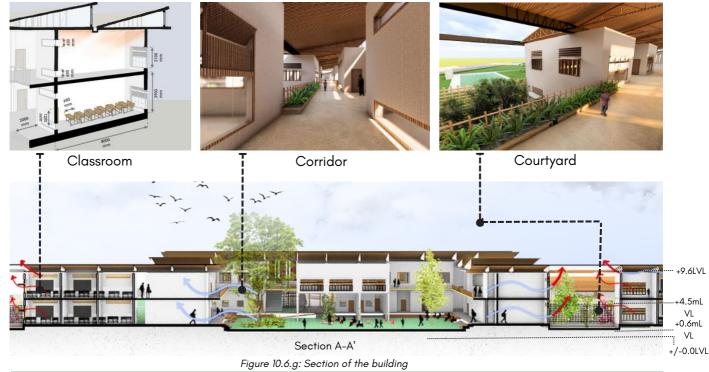
Figure 10.6.d: View of the multi-purpose hall **MPH HALL**

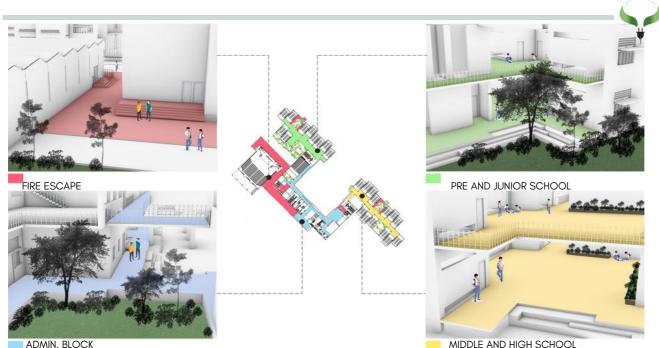

Multi-purpose hall to be rented out for other events such as exhibitions, awareness center (sanitation/women empowerment/ vaccination drives/green buildings etc.), indoor sports competitions, workshops / summer camps and for other schools in close proximity

Porous plinth created by raising the building to avoid water logging on the site

Provision of north light truss for better daylighting

COURTYARD CLASSROOMS COURTYARD CLASSROOM CLASSROOM CLASSROOM CLASSROOM CENTRAL COURTYARD
Figure 10.6.e: Section through northern facade


ADAPTABILITY


The **classroom** modules are designed to function as flexible spaces with alternate functions.

A scenario of classrooms converted to an exhibition space or a combined class as shown

Planter boxes used on first floor as visual connection to green spaces

Figure 10.6.f: Interior view of classrooms

CIRCULATION

For ease of circulation around campus, IPS flooring is combined with coloured additives. Each colour used is specific to its purpose as shown in the legend. Hence this design feature helps the end-user to easily navigate to spaces within the site. 26% of the total built up is dedicated for circulation. Classrooms - 32.7%, services - 2.6% of the total built up area.

FINAL REPORT I SOLAR DECATHLON 2022-23 I GREEN COLLARS

10.7 AFFORDABILITY

STRATEGIES USED TO OPTIMIZE COSTS

CAPEX

Optimizing **Building Height** and loads

in Foundation Costs

to the decrease in Due building height and increase in ground cover, we were able to use an isolated footing system as the loads reduced instead of pile foundations which were necessary in the base case due to a high water table.

Reducing the amount of hardscaped area as well as the use of locally sourced materials like mosaic flooring and paver blocks.

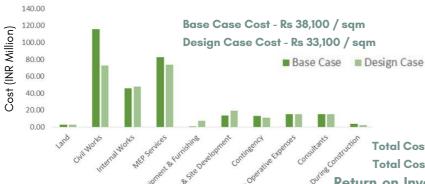


Figure 10.7.a: Base Case vs Desian Case Costina

U	U			V				-	1						
Amount Spent (INR Million) -		Amount Spent (INR Million) -		R Million) -	Period	0	1	2	3	4	5	6	7		
	-	Base Case			Design Ca	se	Cash Inflow (INR Million)		9.57	12.64	15.71	18.78	18.78	18.78	18.78
	Year 1	Year 2	Year 5	Year 1	Year 2	Year 5	Cash Outflow (INR Million)	(40.40)	(2.68)	(5.36)	(8.04)	(8.04)	(8.04)	(8.04)	(8.04)
Maintenance & Repair Costs	3.07			2.6			Net Cash Flow	(40.40)	6.89	7.28	7.67	10.74	10.74	10.74	10.74
Elecrical Supply Costs	3.6	3.6	3.6	£.0	0 0		Cumulative Cash Flow	(40.40)	(33.51)	(26.23)	(18.56)	(7.82)	2.92	13.66	24.40
Water Supply Costs	2.5	2.9	2.9		0	0 0	Discounted Present Value	(40.40)	(31.03)	(24.29)	(17.19)	(7.24)	2.70	12.65	22.59
Sum	9.57	7 12.64	18.78				Discount Rate	8%	Detailed l	list of offic	iont oquir	montura	d montio	nod in the	
Total Amount Invested in							Internal Rate of Return (IRR)	2.18%	Defailed i	isi oi einc	sieni equip	omeni use	a mennoi	nea in ine	,
Efficient Systems	40.4	1					Pauhack Period (upars)		Annendix	na 64					

- 5 vears

Table 10.7.1 No of years taken to regain money spent on energy/water/carbon saving equipment in Design Case - 5 years Table 10.7.1 shows the Return on Investment for additional features added in the design case over the base case. The cash inflow row shows the sum of Maintenance, Electrical and Water costs for the base case, which are inflows for our proposed case as it is a net zero energy and water building. The cash outflow row shows the capital cost in year 0, as well as the maintenance cost for the design case each year. The payback period for the additional costs is 5 years. The payback period for the entire investment in the building, including loans paid is 35 years (detailed calculations on pg 64). This implies that the building pays for itself within its lifetime (50 years), while continuing to generate income for the remaining time. This does not include the cash infows of the project partner (eg. fees) or outflows (eg. salaries). Costing Summary shown in Appendix. (pg 65) Detailed costing sheet attached separately.

38% in Wall Costs

Using materials like Bamboo and Zerund Bricks which are available locally, hence reducing transportation costs as well as feeding into the local economy.

Reducing the water consumption from 45 lcpd to 17 lcpd, which reduces the sizes of the Overhead and Underground tanks.

Reduction in Furnishing Costs

Using innovative Earthquake our protection desks as opposed standard school furniture.

in Energy Costs Replacing standard equipment

with energy effiencient systems that are low maintenance, hence reducing the operation and maintenance costs over time and reducing energy consumption.

Wall

Maintenance Costs

Incorporating materials like Zerund bricks for walls and epoxy flooring, which are low maintenance and also have a low carbon footprint.

Setting up a small biogas plant in order to fulfil the fuel requirements for the kitchen.

Total Cost Base Case - 307.32 INR Million Total Cost Design Case - 266.65 INR Million **Return on Investment for Efficient Equipment**

\mathbf{Q}

ADDITIONAL INCOME STREAMS -


Renting out services

LIFE CYCLE COSTING - STP

Base Case - Conventional STP Capital Cost (INR Million) - 1.4 Life Cycle Cost (INR Million) - 4.71

Design Case - ECO STP

Capital Cost (INR Million) – 1.75 Life Cycle Cost (INR Million) – 2.78

LIFE CYCLE COSTING - WALLS

Capital Cost (INR Million) - 0.88

Life Cycle Cost (INR Million) - 3.09

Capital Cost (INR Million) - 0.48

Life Cycle Cost (INR Million) - 0.72

Base Case - AAC Blocks (100 cu.m)

Design Case - Zerund Bricks (100 cu.m)

Football Field (11 v 11) Rent – Rs 250/hr

J.

Basketball Ground (Full Court) Rent - Rs 100/hr

Tennis Court Rent - Rs 150/hr

GREEN FINANCING OPTIONS - ASSAM GREEN BUDGET 2022-23

Scheme	Output	%	Budget (Lakhs)	
Popularisation of Science- District and State Level National Children's Science Congress	Developing scientific and technological temperament among school students through school based solution oriented projects targetting specific problems of the society	-	-	
Research and Development	Developing Research activities and facilities, human resource development and transferring technology derived from Research for field application and commercialization.	100	54	
Implementation of 1000 MW Solar Power Plants across the State under Mukhyamantri Soura Shakti Prakalpa	Implementation of Solar Plant	100	450	

Table 10.7.3 Green Financing Options that could potentially be used for the building Source : Government of Assam Green Budget 2022-23

10.8 INNOVATION

ACOUSTIC PANELS

Idea: Encourage and allow collaborative learning and engagement of students with sufficient soundabsorbing materials and minimize sound leakages.

Problem: Readymade acoustic partition walls are expensive to install. The materials used can be substituted with locally sourced materials having good sound absorption qualities.

Solution: The components are meticulously designed and built from scratch. They are locally sourced materials such as bamboo mats, jute fibres, rice husk boards and aluminium frames. According to the research report EduARCHsia 2019, bamboo mat cladding has an absorption coefficient of 0.5. Jute fibres are used for sound insulation.

Market: This product can be scalable since it is cost-effective and functions as a sound absorber.

Cost and benefits: The price has decreased overall because the components were constructed from scratch and used locally available materials like rice husk and bamboo mats.

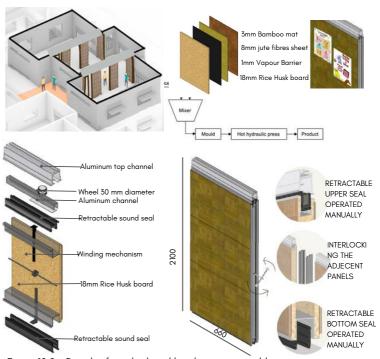


Figure 10.8.i: Details of rice husk and bamboo mat movable acoustic partition walls Refer appendix 12.17, pg .no 74 for costing calculation

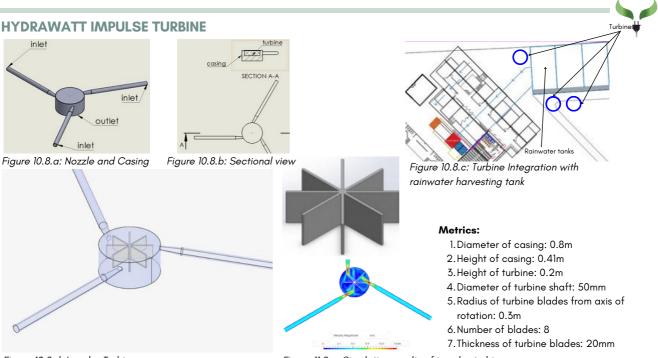


Figure 10.8.d: Impulse Turbine

Figure 11.8.e: Simulation results of impulse turbine

Idea: Our site experiences an immense amount of annual rainfall, and as mandated by the government, a rainwater harvesting tank has to be constructed. Our product couples with the harvesting tank to produce energy, irrespective of whether the water is being collected on-site or being used to recharge the water table. Compared to a water vortex, which requires a large flow rate, this turbine provides greater energy per litre of water. Detailed power calculations (pg.72) along with comparison between the water vortex and the impulse turbine (pg.73), can be found in the Appendix.
 Problem: High percentage of cloud cover in the site and an abundant amount of rainfall, which can be harvested and used for the generation of renewable energy using the impulse turbine, instead of letting it run off.

3. Solution: The impulse turbine converts hydraulic energy into electricity and it can be readily implemented. It is mostly made of glass fibre (turbine and casing), while the pipes are made of PVC, which are antibacterial, antifungal and highly corrosion and abrasion resistant, which results in low maintenance, long life and no maintenance while producing a considerable amount of usable energy. Ease in manufacturing and assembly is indicated by the following factors:

i) Moulding: A set of moulds can be used for large-scale production of components, taking full advantage of economies of scale. Moulding is one of the cheapest forms of manufacturing.

ii) Standard size and shape: Customization requires additional infrastructure and is economically intensive. Different capacities can be accommodated by installing multiple turbines coupled to a common shaft to increase the net torque.

iii) Space-efficient design: The total diameter of the assembly is 0.8m, while the net height/depth is around 0.4m. Thus, it can easily be accommodated even in a domestic setting.

4. Market: Areas with high rainfall and steeper terrains are the target market. Since the turbine is mostly maintenancefree and small in size, areas with low rainfall can use a smaller generator to compensate for the low speed of rotation. The main marketing strategy consists of free installation in domestic and professional settings as a test, and using the results obtained as evidence of its effectiveness to attract customers and assure them of its various benefits.

5. Costs and Benefits: The assembly would cost around Rs. 90,000 to produce (Rs.30,000 for the turbine and the rest for the generator, which is variable), while the maintenance cost would depend on the generator manufacturer. Since the turbine requires no maintenance, the OPEX is very low. Although rainwater harvesting has been made mandatory by governmental agencies, our product would be able to reduce expenditure on electricity, indirectly reducing the total amount of carbon emitted from burning fossil fuels, reduce dependency on solar panels, which have a greater cost/energy ratio, while simultaneously incentivizing people to implement the same.

Name: SAFETY PRISM (Earthquake-resistant furniture)

Idea: A bench with a top that can be rotated 240 degrees to convert to the most stable form of geometry—a triangle— during an earthquake to transform into a protective shield against falling objects. It is immediately accessible and is a quick response during a disaster.

Problem: In earthquake-prone areas, buildings kill more than the earthquake itself due to falling objects, therefore, immediate protection can be provided by integrating a shield with the nearest contact, which is furniture. This can offer immediate protection from any objects falling vertically onto people.

DESIGN DOCUMENTATION

Solution: Furniture that is ergonomically suitable for various ages that provides immediate protection from unforeseen falling objects. This is made from locally sourced materials as the legs are made up of bamboo (Bambusa Balcooa), the tabletop is made of bamboo plywood and joinery A is from welded steel, joinery B is bolted to bamboo.

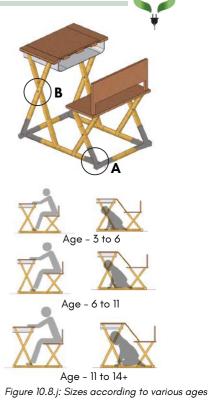
Market: Due to the Northeast region's annual seismic risk, it is possible to scale the furniture to all schools in earthquake-prone areas for the protection of the occupants in unforeseen and dangerous circumstances. It is possible to scale up because only the main members have to be replaced and it can be replaced with the locally available materials of that region and easily assembled.

Cost and benefits:

Base case: Furniture with steel structure, wooden tabletop and seating. Cost: Rs 5,000.

Design case: Bench made from Bamboo and steel joinery. Cost: Rs. 1600

This is completely dismantlable and can be packed compactly. The materials are locally sourced making it economical. Assembling and re-assembling is quick and joinery is very simple.



Steel joinery A connecting the bamboo structure

Completely dismantled On site assembly

The triangle is formed when the table top is flipped

The table top can be flipped 240 degress Figure 10.8.k Earthquake shield bench

Refer appendix 12.17, pg .no 75 for WD drawings

FIGURE 10.8.L EARTHQUAKE SHIELD BENCH PROTOTYPE SCALE 1:1 STILL IN PROCESS

Name - BAH SHORON (Bamboo shelter/Partition walls)

Idea: A multi-functional panel that can serve both as a functioning student desk and an interior partition. Due to its modular design, it can be readily shifted and transferred to new locations as needed.

Problem: Although extra elements were introduced to make partition panels § versatile, they still only serve one purpose.

Solution: Assam offers a wealth of locally produced, cost-effective, and lowembodied carbon materials including bamboo and jute. Having them weather resistant, they can withstand outdoor conditions, which suits the purpose of the partition panels.

Market: Since a majority of Assam's areas are prone to earthquakes and flooding, these panels can be used for patient interior hospital wards, outdoor refuges, and vaccination drives during emergencies.

Cost and benefits: By converting these partition walls into tables, children can stand up and work, which is good for their physical health. It can also be transformed into a roof, enticing children to spend time outside and giving them shade.

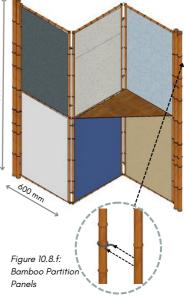
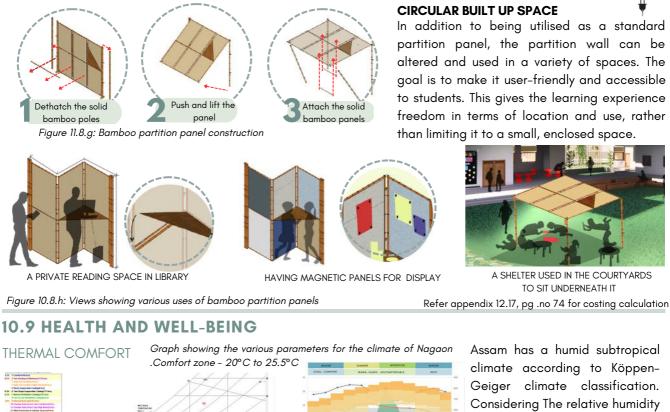
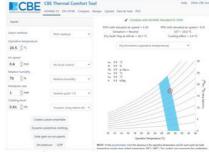



Figure 10.9.a: Psychrometric chart

Source: Climate Consultant

Assam has a humid subtropical climate according to Köppen-Geiger climate classification. Considering The relative humidity are >55%, levels heat ጲ humidification have been taken care of through ventilation. Cooling and dehumidification for > 24°C, various strategies used to achieve 100% were comfortable hours


The IMAC (India Model for Adaptive Comfort) shows that there is a potential for utilizing favourable outdoor environmental conditions. We are opting for 16% of our building area as mechanically ventilated (only in summer months) and 84% of the building area is naturally ventilated throughout the year. Spaces such as MPH and seminar hall are made for mixed-mode operation. For about 8.4% of the operational period that is 84% of comfortable hours can be achieved through passive design and natural ventilation. Hence the building is designed to be a naturally ventilated building. According to IMAC, for naturally ventilated buildings, the 90% acceptability range is +2.4°C from the neutral temperature (20.5-28.5C). All of the above mentioned results have been achieved as seen in the simulations. Summer months are mostly naturally ventilated, 16% of nonconditioned hours can be made comfortable by ceiling fans which bring down the temperature by 2-3°C.

Mahoney's table

Figure 10.9.b: Graph generated from

Operative temperature = (0.25 x DBT (30-day running mean) + 17.87

By introducing an elevated air speed of 0.7m/s, the upper comfort threshold is further increased by 2.5°C as given by 55-2017 ASHRAE which is achieved through ceiling fans providing comfortable hours during unconditioned times. (Calculated using CBE Thermal comfort tool)

Table 10.9.1: Maximum and minimum temperature ranges Figure 10.9.c: CBE Thermal Comfort Tool with 90% acceptability Source : IMAC comfort tool

The use of materials which have low conductivity, envelope optimization, efficient Window-Wall Ratio (WWR) and natural ventilation have helped in decreasing the internal heat gain within the building.

Therefore, achieving 100% comfortable hours in the building.

FINAL REPORT | SOLAR DECATHLON 2022-23 | GREEN COLLARS

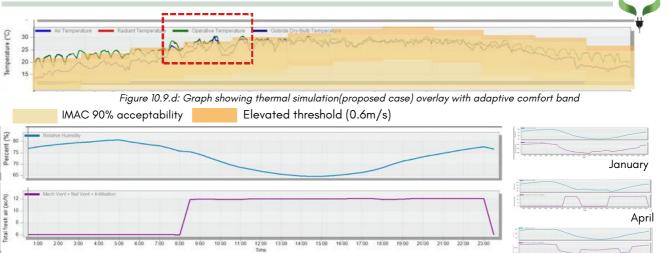
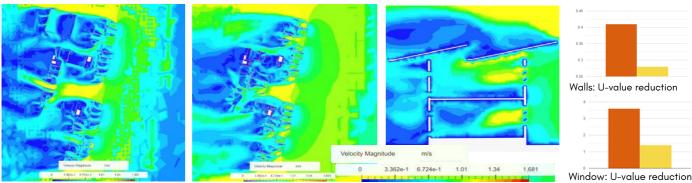



Figure 10.9.e: Relative humidity, total fresh air for July,

Refer to appendix 12.16 , page 69 for further monthly breakdown graphs

The envelope of the building was also optimized by using materials that have lower U-values to increase the thermal performance of the building so that the comfort conditions are achieved while also reducing the energy requirements of the building to maintain those conditions.

VENTILATION

Ground floor

First floor

Figure 10.9.g: Wind Simulations Source: Ansys

The wind simulations show that the air speed achieved in the classrooms is between 0.3 m/s to 0.7 m/s without fan-forced ventilation. Therefore with ceiling fans and aided ventilation, air speeds within the building can be increased further to improve thermal comfort and reduce humidity. The design lets the wind pass through it rather than resist it, this results in letting in enough wind for the comfortable usage of the classrooms. The sill height has been maintained in order with the height of the tables.

ORIENTATION

East-West orientation increases ventilation and daylight access. The stack effect can also help regulate indoor temperature and thermal comfort. In winter, the warm air rising inside the building can help keep the upper floors warmer, reducing the need for heating and improving comfort for occupants.

CANTEEEN ISTAIRCASE I INTO CORRIDOOR ROOMS Figure 10.9.h: Sunlight and airflow network diagrams

VISUAL COMFORT (DAYLIGHTING)

The light cycle of the sun has a powerful effect on the circadian clock, sleep, and alertness. Utilizing the sunlight from the northern side, the first floor is roofed with a north-light truss to optimize the amount of daylight entering the building and improve visual comfort.

Simulations of UDI (in energy performance page no.17)in classrooms prove that the classrooms are daylit for 75% of the year which means for 1650 hours of 2200 hours, the building is 100% daylit, not only reduces lighting loads but also make students more active.

October

Roof: U-value reduction

Base case

Design case

Figure 10.9.i: Section northern window

INDOOR AIR QUALITY

Figure 10.9.j: View of the library

 Use of courtyards in spaces like library.

This contributes in a more productive indoor environment.

Figure 10.9.k: View of the central courtyard

- Creating more interactive spaces for the better mental growth of the students.
- Using an element of biophilia on the jali results in a much cooler microclimate.

Figure 10.9.m: View of self-shaded spaces due to staggering of the building

• To ensure outdoor comfort, shaded seating under trees have also been created.

STRATEGIES TO REDUCE THERMAL SHOCK

- Semi-covered transitional spaces have been incorporated throughout the building to reduce thermal shock.
- Due to the staggering of the building, selfshaded niches and pockets have been created which act as areas where students come together.
- They also have a visual connection with the sports area of the campus.

- Made up of bamboo , which is sustainable and locally available.
- Prevention of harsh south light entering the transition spaces.

Aloe Vera

Figure 10.9.1: View of the smaller courtyard and staircase between classrooms

Reference: picturethisai.com

- Indoor plants perform various functions such as reducing the moisture content and dehumidification while also maintaining indoor air quality by purifying the air from particles such as formaldehyde and xylene. Reference: abanahomes.com/best-air-purifying-plants/
- Indoor air quality has also been maintained by reducing the VOC contents by using lime plaster with natural pigment, avoiding painting the internal walls as compared to base case cement paint, and Zerund bricks reducing carbon emissions by 50%.

SPACES	AIR EXCHANGES PER HOUR (AS PER NBC)	ACH ACHIEVED	
CLASSROOMS	5 TO 7	17	
LABORATORIES	6 TO 15	14	
LIBRARY	3 TO 5	5	
HOD	6 TO 20	20	Refer Appendix
CANTEEN	8 TO 12	9	12.16 ,pg. no 71
TOILETS	6 TO 10	7	for calculations

Table 10.9.2: Air Exchanges achieved

• A sufficient number of air exchanges have also been ensured in key spaces of the building to have constant supply of fresh air

ACOUSTIC COMFORT

• The indoor movable acoustic partition walls have a retractable upper and bottom sound seal, and sandwiched bamboo mats and jute fibres and rice husk have good sound absorption, maintaining a 40 - 45 dD noise level indoors.

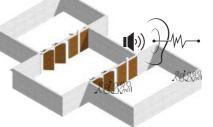


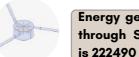
Figure 10.9.n: Partition walls for acoustic comfort

The National Highway 37 abutting the site causes a background noise level that peaks at 98.2dB and an average of 60.7 dB. The rammed earth compound wall reflects the noise from the highway, green buffer further shields the site from outdoor noise.

10.10 VALUE PROPOSITION PITCH TO PROJECT PARTNER

EKĀGRA is a net zero positive-energy, net zero-water building for Gyandeep foundations DPS school, Nagaon, Assam. The school has an area of 8072 sqm, proposed to host 1800 students and 200 staff with the possibility of future expansion catering to the students of Nagaon and nearby villages.

Use of Zerund bricks for walls giving an EC reduction of 124%

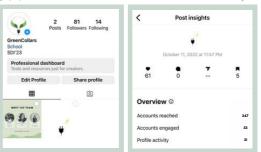

An efficient rainwater harvesting system has been worked out to achieve net zero water

Helps students learn about NZEBs and sustainabili ty and the processes involved

The project acts as a Community Resilience center during disasters, mainly the MPH which has been tested and simulated for earthquake.

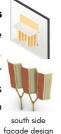
Multi-resilience structure

Net +ve energy 8410 KWh/yr eff


earthquake furniture design jute partition walls

Incorporating vernacular materials, and methods of construction of Assam by using bamboo – availability of high-quality bamboo. Helping local workers, construction, craftsman, economy. The circular economy of materials reduces greenhouse gas emissions. Planting bamboo in the unbuilt part of the site.

IMPULSE TURBINE Reducing loads and power consumption and fulfilling the energy requirements using the impulse turbine system and solar panels.


Energy generated through Solar PV is 222490 kWh

SOCIAL MEDIA

Day-lit - 98% of operational hours

Optimizing sunlight entering the space to induce natural lighting. The roof also provides space for solar panels. Individual windows have been designed according to the shading angles.

EC reduction = 77%

Net-Zero waste

Use of biogas for cooking

Decrease of 30% in the OPEX and 12% in the CAPEX

Encouraging use of local materials for school supplies-and equipment -like furniture,bags, panels,etc.Furniture are dismantlable, hence convenient and cost effective to the users.

Interiors are designed to provide 100% thermal **comfort** and withstand high humidity by creating breakout spaces and courtyards, use of indoor plants, organic farming improving the health and mental wellbeing of the users.

The proposed cost of construction is Rs. 266.65 INR Million which is 12% decrease from the base case cost of construction which is Rs.307.32 INR Million

Our proposed building earns 81 points which come under the 4 star GRIHA Figure 10.10.a: Project partner pitch

11. REFERENCES

Water-Performance-Index-An-Efficient-Water-Management-Tool.pdf

https://cgwb.gov.in/District_Profile/Assam/Nagaon.pdf

www.istructe.org/IStructE/media/Public/Resources/istructe-how-to-calculate-embodied-carbon.pdf www.zerund.com/product

https://www.advancingnortheast.in/wp-content/uploads/2021/12/Bamboo-Mat-Board.pdf

https://www.researchgate.net/publication/366064930_International_Journal_of_Sustainable_Construction_Engineering_and_Technology_Comparative_Analysis_on_Roof_Covering_Materials_Sustainabi lity_as_Constructed_by_Bamboo_and_Corrugated_Galvanized_Iron_Shee

http://www.emccement.com/pdf/Full-BSRIA-ICE-guide.pdf

http://www.ecostp.com/

https://comfort.cbe.berkeley.edu/compare

https://www.sintexplastics.com/products/water-storage-solutions/sintex-loft-water-tanks/

https://www.icssr.org/sites/default/files/districts/Nagaon.pdf

https://power.assam.gov.in/documents-detail/draft-ecbc-assam-energy-conservation-building-code-2018

https://www.ijrte.org/wp-content/uploads/papers/v8i5/E5024018520.pdf

https://5.imimg.com/data5/GE/IN/RS/SELLER-43965630/daikin-rxymq6pve-vrv-heat-pump-airconditioning-system.pdf

https://clf.jhsph.edu/projects/food-system-

 $resilience \#: \tilde{\ }: text = What \% 20 is \% 20 food \% 20 system \% 20 resilience, and \% 20 accessible \% 20 food \% 20 for \% 20 all where the text is the text of text of the text of tex of tex of text of text of text of tex$

https://www.designingbuildings.co.uk/wiki/Topmix_Permeable#:~:text=Topmix%20Permeable%20is%20a%20fast,rate%20of%20300%20mm%2Fhour

https://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1251&context=eesp

http://www.ijlera.com/papers/v2-i5/part-III/A3.pdf

https://www.semanticscholar.org/paper/Particleboards-from-rice-husk%3A-A-brief-introduction-Johnson-Nordin/325bdbd4d48799c33c9358b75ab557d1ed9d2cb1

https://asdma.assam.gov.in/

http://sdmassam.nic.in/

https://smartnet.niua.org/content/a12983b6-3235-4ab9-b829-0482f53afe7a

https://www.inbar.int/resources/inbar-publications/technical-reports/

https://ipirti.gov.in/bamboohousingsystem.html

https://www.researchgate.net/publication/339735765_ASSESSMENT_OF_SOLID_WASTE_GENERATION_AND_MANAGEMENT_IN_SELE CTED_SCHOOL_CAMPUSES_IN_PUDUCHERRY_REGION_INDIA

https://circularecology.com/embodied-carbon-footprint-database.html Government of Assam Green Budget 2022-23 https://cielowigle.com/blog/humidity-absorbing-plants/

https://www.picturethisai.com/

https://abanahomes.com/best-air-purifying-plants/

Acoustical Abilities of Woven Bamboo to Absorbing and Transmitting of the Sound |...

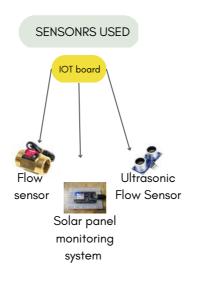
Request PDF | On Jan 1, 2020, Suyatno and others published...


12. APPENDIX 12.1 POSTER 1

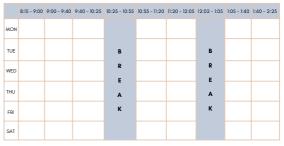
Appendix figure 1: School poster

12.2 R&D BLOCK

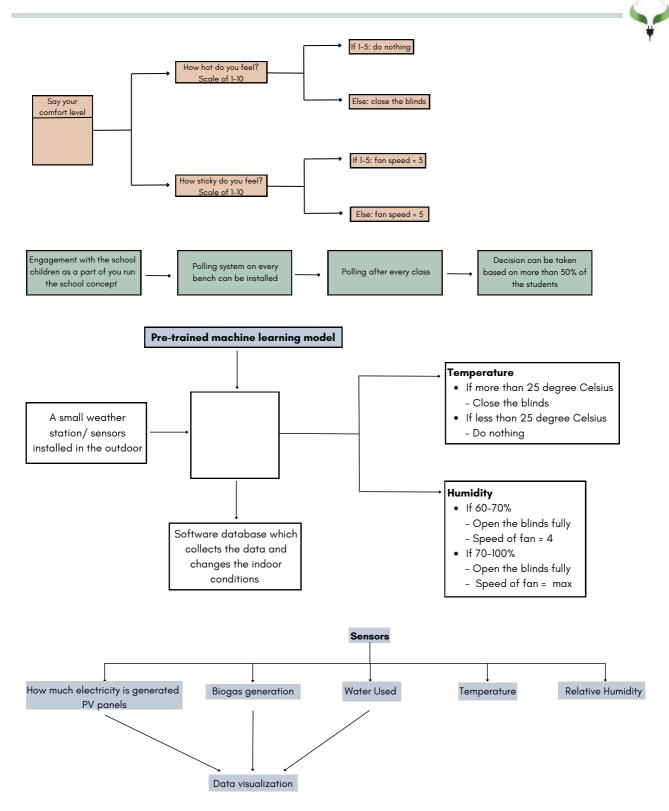
Appendix Figure 3: Energy board


Each class's energy consumption is displayed and by the end of the month the class which saved the most energy is rewarded.

Appendix figure 2: R&D Block poster


ENERGY DAILY DISPLAY

The UX/UI interface is userfriendly and visually appealing, with easy-tounderstand data that is accessible at a glance. It includes a dashboard that displays the current solar energy, water generation, biogas and waste generation along with a


generation along with a graph that shows the historical data.

There are a total of two different visual panels one that shows the energy status of the class and the other one that is an interactive screen which takes input from the students about their comfort level and gives them strategies to optimise their thermal comfort and suggests them with strategies

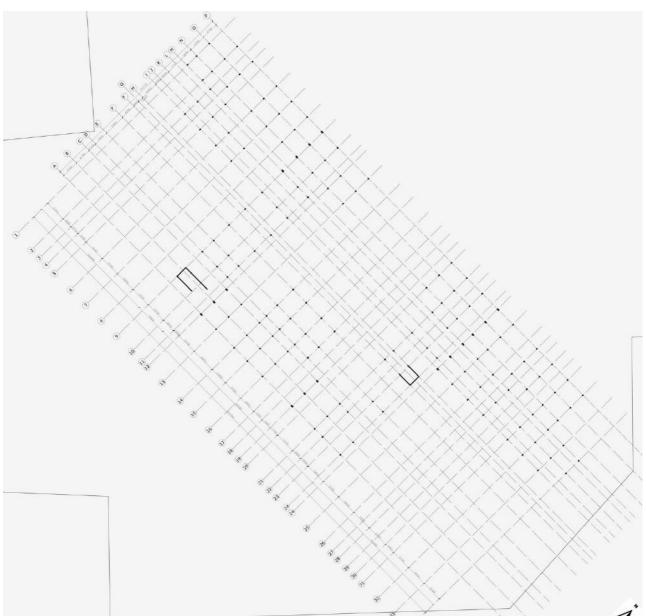
Appendix figure 4: Time table

Appendix figure 4: Time table

12.3 DETAILED BUILDING AREA PROGRAM

2 St 3 Ca 4 In 5 La 6 Ar 7 Ac 8 Lii 9 Pr 10 HC 11 Ac 12 St 13 M 14 L5 St 16 Pr	ataff rooms canteen nfirmary abs at Room at Room at Room brary Principal OD dmin ctorage	Pre school Junior Middle High Jr & middle High Physics Chem Bio Comp Large Block	30 40 40 12 480 280 7 25 25 25 25 25 25 40 40 40 2000 2	60 60 60 30 100 50 20 70 70 70 70 70 70 70 60 300 20	8 12 12 14 4 1 1 1 1 1 1 2 1 3 3 1	720 720 840 120 50 20 70 70 70 70 70 70 70	Non - Conditioned Non - Conditioned	30 40 40 40 12 480 280 7 25 25 25 25 25 25 25 40	48 48 56 4 28 28 28 28 28 28 28 28 28 28 28 28 28
3 Ca 4 In 5 La 6 Ar 7 Ac 8 Lil 9 Pr 10 Hc 11 Ac 12 St 13 Mc 14 St 15 St 16 Pr	anteen anteen nfirmary abs abs abs abs abs abs abs abs	Middle High Jr & middle High Physics Chem Bio Comp	40 40 12 480 280 7 25 25 25 25 25 25 40 40 40 2000 2	60 60 30 100 50 20 70 70 70 70 70 70 70 60 300	12 14 4 1 1 1 1 1 1 2 1 3	720 840 120 50 20 70 70 70 70 70 70 70 70	Non - Conditioned Non - Conditioned Non - Conditioned Non - Conditioned Non - Conditioned Conditioned Non - Conditioned Non - Conditioned Non - Conditioned Non - Conditioned Non - Conditioned Non - Conditioned	40 40 12 480 280 7 25 25 25 25 25 25 25 25 40	48 56 4 28 28 22 2 2 2 2 2 5 4
3 Ca 4 In 5 La 6 Ar 7 Ac 8 Lil 9 Pr 10 Hc 11 Ac 12 St 13 Mc 14 St 15 St 16 Pr	anteen anteen nfirmary abs abs abs abs abs abs abs abs	High Jr & middle High Physics Chem Bio Comp	40 12 480 280 7 25 25 25 25 25 25 40 40 40 2000 2	60 30 100 50 20 70 70 70 70 70 70 70 60 300	14 4 1 1 1 1 1 1 1 2 1 3	840 120 50 20 70 70 70 70 70 70 70	Non - Conditioned Non - Conditioned Non - Conditioned Conditioned Non - Conditioned Non - Conditioned Non - Conditioned Non - Conditioned Non - Conditioned Non - Conditioned	40 12 480 280 7 25 25 25 25 25 25 25 40	56 4 48 28 2 2 2 2 2 2 5 4
3 Ca 4 In 5 La 6 Ar 7 Ac 8 Lil 9 Pr 10 Hc 11 Ac 12 St 13 Mc 14 St 15 St 16 Pr	anteen nfirmary abs wrt Room wrt Room ibrary brary rincipal IOD dmin storage IPH obby	Jr & middle High Physics Chem Bio Comp	12 480 280 7 25 25 25 25 25 40 40 40 2000 2	30 100 50 20 70 70 70 70 70 70 60 300	4 1 1 1 1 1 1 2 1 3	120 100 50 20 70 70 70 140 70	Non - Conditioned Non - Conditioned Conditioned Non - Conditioned Non - Conditioned Non - Conditioned Non - Conditioned Non - Conditioned Non - Conditioned	12 480 280 7 25 25 25 25 25 25 25 40	4 48 28 2 2 2 2 2 2 5 4
3 Ca 4 In 5 La 6 Ar 7 Ac 8 Lil 9 Pr 10 Hc 11 Ac 12 St 13 Mc 14 St 15 St 16 Pr	anteen nfirmary abs wrt Room wrt Room ibrary brary rincipal IOD dmin storage IPH obby	Jr & middle High Physics Chem Bio Comp	12 480 280 7 25 25 25 25 25 40 40 40 2000 2	30 100 50 20 70 70 70 70 70 70 60 300	4 1 1 1 1 1 1 2 1 3	120 100 50 20 70 70 70 140 70	Non - Conditioned Non - Conditioned Conditioned Non - Conditioned Non - Conditioned Non - Conditioned Non - Conditioned Non - Conditioned Non - Conditioned	12 480 280 7 25 25 25 25 25 25 25 40	4 48 28 2 2 2 2 2 2 5 4
3 Ca 4 In 5 La 6 Ar 7 Ac 8 Lil 9 Pr 10 Hc 11 Ac 12 St 13 Mc 14 St 15 St 16 Pr	anteen nfirmary abs wrt Room wrt Room ibrary brary rincipal IOD dmin storage IPH obby	High Physics Chem Bio Comp	480 280 7 25 25 25 25 40 40 40 2000 2	100 50 20 70 70 70 70 70 70 60 300	1 1 1 1 1 1 1 2 1 3	100 50 20 70 70 70 140 70	Non - Conditioned Non - Conditioned Conditioned Non - Conditioned Non - Conditioned Non - Conditioned Non - Conditioned Non - Conditioned	480 280 7 25 25 25 25 25 25 25 40	48 28 2 2 2 2 2 5 4
4 In 5 La 6 Ar 7 Ac 8 Lil 9 Pr 10 Hc 11 Ac 12 St 13 Hc 15 St 16 Pr	nfirmary abs at Room ictivity Room ibrary Principal IOD idmin storage IPH obby	High Physics Chem Bio Comp	280 7 25 25 25 25 40 40 40 2000 2	50 20 70 70 70 70 70 60 300	1 1 1 1 1 1 2 1 3	50 20 70 70 70 70 140 70	Non - Conditioned Conditioned Non - Conditioned Non - Conditioned Non - Conditioned Non - Conditioned Non - Conditioned	280 7 25 25 25 25 25 25 25 40	28 2 2 2 2 5 4
5 La 6 Ar 7 Ac 8 Lii 9 Pr 10 Hc 11 Ac 12 St 13 Hc 15 St 16 Pr	abs art Room kctivity Room ibrary Principal IOD kdmin Storage IPH obby	Physics Chem Bio Comp	7 25 25 25 40 40 2000 2	20 70 70 70 70 70 60 300	1 1 1 2 1 3	20 70 70 70 140 70	Conditioned Non - Conditioned Non - Conditioned Non - Conditioned Non - Conditioned Non - Conditioned	7 25 25 25 25 25 25 40	2 2 2 5 4
5 La 6 Ar 7 Ac 8 Lii 9 Pr 10 Hc 11 Ac 12 St 13 Hc 15 St 16 Pr	abs art Room kctivity Room ibrary Principal IOD kdmin Storage IPH obby	Chem Bio Comp	25 25 25 40 40 2000 2	70 70 70 70 70 60 300	1 1 1 2 1 3	70 70 70 140 70	Non - Conditioned Non - Conditioned Non - Conditioned Non - Conditioned Non - Conditioned	25 25 25 25 25 40	2 2 2 5 4
6 Ar 7 Ac 8 Lil 9 Pr 10 Hc 11 Ac 12 St 13 M 14 Lc 15 St 16 Pr	art Room Activity Room Ibrary Principal IOD Admin Storage IPH obby	Chem Bio Comp	25 25 40 40 2000 2	70 70 70 70 60 300	1 1 2 1 3	70 70 140 70	Non - Conditioned Non - Conditioned Non - Conditioned Non - Conditioned	25 25 25 40	2 2 5 4
7 Ac 8 Lil 9 Pr 10 Hc 11 Ac 12 St 13 M 14 Lc 15 St 16 Pr	Activity Room ibrary Principal IOD Admin Storage IPH obby	Bio Comp	25 25 40 40 2000 2	70 70 70 60 300	1 2 1 3	70 140 70	Non - Conditioned Non - Conditioned Non - Conditioned	25 25 40	2 5 4
7 Ac 8 Lil 9 Pr 10 Hc 11 Ac 12 St 13 M 14 Lc 15 St 16 Pr	Activity Room ibrary Principal IOD Admin Storage IPH obby	Comp	25 40 40 2000 2	70 70 60 300	2 1 3	140 70	Non - Conditioned Non - Conditioned	25 40	5
7 Ac 8 Lil 9 Pr 10 Hc 11 Ac 12 St 13 M 14 Lc 15 St 16 Pr	Activity Room ibrary Principal IOD Admin Storage IPH obby		40 40 2000 2	70 60 300	1	70	Non - Conditioned	40	4
7 Ac 8 Lil 9 Pr 10 Hc 11 Ac 12 St 13 M 14 Lc 15 St 16 Pr	Activity Room ibrary Principal IOD Admin Storage IPH obby	Large Block	40 2000 2	60 300	3				
7 Ac 8 Lil 9 Pr 10 Hc 11 Ac 12 St 13 M 14 Lc 15 St 16 Pr	Activity Room ibrary Principal IOD Admin Storage IPH obby	Large Block	40 2000 2	60 300	3				
8 Lil 9 Pr 10 H0 11 A0 12 St 13 M 14 L0 15 St 16 Pr	ibrary Principal IOD Admin Storage IPH obby	Large Block	2000 2	300		100	Non - Conditioned	40	12
9 Pr 10 H0 11 A0 12 St 13 M 14 L0 15 St 16 Pr	Principal IOD Admin Storage IPH obby	Large Block	2		1	200			
10 H0 11 A0 12 St 13 M 14 L0 15 St 16 Pr	IOD .dmin Storage IPH obby			20			Non - Conditioned	2000	
11 Ao 12 St 13 M 14 Lo 15 St 16 Pr	idmin Storage I PH obby		2		1	20	Conditioned	2	
11 Ao 12 St 13 M 14 Lo 15 St 16 Pr	idmin Storage I PH obby			15	4	60	Non - Conditioned	2	
12 St 13 M 14 Lo 15 St 16 Pr	itorage IPH obby			15					
13 M 14 Lo 15 St 16 Pr	1PH obby		50	60	1	60	Non - Conditioned	50	5
13 M 14 Lo 15 St 16 Pr	1PH obby			15	4	60	Non - Conditioned		
14 Lo 15 St 16 Pr	obby		1000	800	1		Conditioned	800	
15 St 16 Pr	A DE DAVIDA DE		20	30	1		Non - Conditioned	20	
16 Pr	CONTRACTOR OF A DESCRIPTION OF A DESCRIP		50	20	1		Non - Conditioned	50	
	rinting Room			10	4		Non - Conditioned		
17 Ki	litchen		10	30	1		Non - Conditioned	10	
18 Se	eminar Hall		400	200	1	200	Conditioned	400	40
19 R	&D block		25	150	1	150	Conditioned	25	2
20 To	oilet Blocks			52.5	8	420	Non-conditioned		
	howers			10	1		Non-conditioned		
	hanging Rooms			10	1		Non-conditioned		
23 Ci	Circulation					2000	Non-conditioned		
Se	ervices								
1 Pt	ump room			40	1	40	Non-conditioned		
2 S				35	1		Non-conditioned		
	reated water tank			10	1		Non-conditioned		
	omestic water tank			10	1		Non-conditioned		
	tain water tank ire tank			10 15	1		Non-conditioned		
	HT tank			3	2		Non-conditioned		
	lub/Server Room			16	1	-	Conditioned		
	lectrical Room			10	1		Conditioned		
	anel Room			30	1		Non-conditioned		
	V Room			15	1		Non-conditioned		
т	otal Built Up Area					8072			
	ordi built op Area					0012			
St	tudent Zone					5010			
NG89	Office Zone					380			
G	eneral					2682			
C	onditioned Area					1216			
	Ion-Conditioned Area					6856			
0	pen Areas							Stud	ent zone
	oot ball ground			6828	1	6828			
	lasketball			415	2	830			
	ennis			315	1	315		offic	ce zone
	wimming Pool			416	1	416			
	lay Ground			400	1	400			
	arking			600	1	600		conc	ditioned
	T Yard + Transformer			50	1	50			
8 D0	G Yard			60	1	60			المعرفة المعرفة
	otal Open Areas					9499		non	conditioned

Appendix table 1: Detailed building area program


12.4 COMPARATIVE AREA PROGRAMME

BASE CASE	NO	TOTAL AREA	DESIGN CASE	NO	TO TAL AREA
Classrooms	42	2362	Classrooms	46	2640
Staff Rooms	7	110	Staff Rooms	4	120
Canteen	1	100	Canteen	2	150
Infirmary	1	30	Infirmary	1	30
Labs	4	200	Labs	5	350
Activity Room	4	280	Activity Room	3	180
Admin Block		240	Admin Block		270
MPH	1	800	мрн	1	800
Lobby	1	30	Lobby	1	30
Toilets	3	414	Toilet Blocks	8	420
Circulation		2000	Circulation		2100
			Art Room	1	70
Library	1	300	Library	1	300
			Seminar Hall	1	200
Kitchen	1	30	Kitchen	1	30
			RnD	1	150
			Showers	1	20
Services		200	Services		212
		7096			8072

Appendix table 2: Comparative area

12.6 ENGINEERING DRAWINGS

Appendix figure 7: Column grid layout

SOLID WASTE MANAGEMENT

CATEGORY	MATERIAL	ACTION		
NON-BIODEGRADABLE	PLASTIC	Plastic embedded lightweight brick manufacturing		
	PVC WASTE(from building)			
BIO-DEGRADABLE	FOOD	Composting		
WASTE	LEAVES			
RE-CYCLABLE WASTE	PAPER	Material collected could be		
	CARDBOARDS	used to create innovative		
	PAPER TUBE	 products, thus inducing the knowledge of sustainability in students. 		
BIO - WASTE	SANITARY PADS	Incinerator		
	MEDICAL WASTE FROM INFIRMARY			

Appendix table 3: Solid waste management

* Rajamanikam Ramamoorthy,Gopalsamy Poyyamoli1, Sunil Kumar(Solid and Hazardous Waste Management Division, Nehru Marg, Nagpur-440 020, India);"ASSESSMENT OF SOLID WASTE GENERATION AND MANAGEMENT IN SELECTED SCHOOL CAMPUSES IN PUDUCHERRY REGION, INDIA"-2019; Published in Environmental Engineering and Management Journal

Waste Category	Waste generated(*) (Kg/capita/day)	Total Waste generated (Kg/day)
FOOD	0.036	72
PAPER	0.030	60
PLASTIC	0.007	14
BIO MEDICAL	0.001	2
LANDSCAPE	0.01	20
OTHERS	0.003	6

COLUMN GRID LAYOUT

Appendix table 4: Quantity of Solid waste generation in school per day

12.7 ENERGY CALCULATIONS OF DESIGN CASE

APPLIANCE	Quantity	Wattage (W)	No.of hours / day	Diversity factor	Energy consumed daily (Whr)	No.of days	Energy consumed annually (Whr)
Smart board	46	220	5	0.95	48070	243	11681010
Laptops	0	150	5	0.95	0	243	C
Computers	65	65	5	0.95	20068.75	243	4876706.25
Printers	8	35	5	0.95	1330	243	323190
Projectors	4	500	5	0.95	9500	243	2308500
Microwave	2	950	5	0.95	9025	243	2193075
Induction	2		5	0.95		243	
Coffee machine	0	1000	5	0.95	0	243	
Ceiling fans	195	34	5	0.95	31492.5	243	
6A Sockets	209	100	5	0.95	99275	243	
16A Sockets	14	100	5	0.75	66500	243	
			5				
PHE	1	15		0.95	71.25	243	
Lifts	2	3500	8	0.95		243	
Exhaust fans	14	16	8	0.95		243	
CC Cameras	78	5	24	0.95	8892	243	
Refrigerator	4	28.4	24	0.95	2590.08	243	629389.44
Fire alarm	85	45	24	0.95	87210	243	21192030
Water purifier	8	36	24	0.95	6566.4	243	1595635.2
Jockey pumps	1	365.52	24	0.95	8333.856	243	2025127.008
Hydrant pumps	1	365.52	24	0.95	8333.856	243	2025127.008
STP pumps	1		24	0.95	8333.856	243	
1. 197						_ 10	
LUNCH TIME							
Smart board	46	220	1	0.2	2024	243	491832
Laptops	40	150	1	0.2		243	
Computers	65	45	1	0.2		243	
Printers	4	35	1	0.2	28	243	
Projectors	4	500	1	0.2	400	243	
Microwave	2		1	0.2	380	243	
Induction	2		1	0.2	600	243	
Coffee machine	0	1000	1	0.2	0	243	0
Ceiling fans	195	34	1	0.2	1326	243	322218
6A Sockets	209	100	1	0.2	4180	243	1015740
16A Sockets	14	1000	1	0.2	2800	243	680400
						Total energy	120403377
OFFICE ZONE							
APPLIANCE							
	Quantity	WATTAGE (W)	No of hours / day	Diversity factor	Energy consumed daily (Whr)	No of days	Energy consumed annually (Whr)
	-		-	-	Energy consumed daily (Whr)	-	Energy consumed annually (Whr)
Laptops	48	65	8	0.95	23712	243	5762016
Laptops Computers	48 19	65 65	8	0.95	23712 9386	243 243	5762016 2280798
Laptops Computers Printers	48 19 8	65 65 35	8	0.95 0.95 0.95	23712 9386 2128	243 243 243	5762016 2280798 517104
Laptops Computers Printers Coffee machine	48 19 8 6	65 65 35 1000	8 8 8 8	0.95 0.95 0.95 0.95	23712 9386 2128 45600	243 243 243 243 243	5762016 2280798 517104 11080800
Laptops Computers Printers	48 19 8 6 4	65 65 35	8 8 8 8 8 8 8	0.95 0.95 0.95	23712 9386 2128 45600 15200	243 243 243	5762016 2280798 517104 11080800 3693600
Laptops Computers Printers Coffee machine	48 19 8 6	65 65 35 1000	8 8 8 8	0.95 0.95 0.95 0.95	23712 9386 2128 45600 15200	243 243 243 243 243	5762016 2280798 517104 11080800 3693600
Laptops Computers Printers Coffee machine Cleaning	48 19 8 6 4	65 65 35 1000 500 100	8 8 8 8 8 8 8	0.95 0.95 0.95 0.95 0.95	23712 9386 2128 45600 15200 94240	243 243 243 243 243 243 243	5762016 2280798 517104 11080800 3693600 22900320
Laptops Computers Printers Coffee machine Cleaning 6A Sockets	48 19 8 6 4 124	65 65 35 1000 500 100	8 8 8 8 8 8 8 8 8	0.95 0.95 0.95 0.95 0.95 0.95	23712 9386 2128 45600 15200 94240	243 243 243 243 243 243 243	5762016 2280798 517104 11080800 3693600 22900320
Laptops Computers Printers Coffee machine Cleaning 6A Sockets	48 19 8 6 4 124	65 65 35 1000 500 100	8 8 8 8 8 8 8 8 8	0.95 0.95 0.95 0.95 0.95 0.95	23712 9386 2128 45600 15200 94240	243 243 243 243 243 243 243	5762016 2280798 517104 11080800 3693600 22900320
Laptops Computers Printers Coffee machine Cleaning 6A Sockets	48 19 8 6 4 124	65 65 35 1000 500 100	8 8 8 8 8 8 8 8 8	0.95 0.95 0.95 0.95 0.95 0.95	23712 9386 2128 45600 15200 94240	243 243 243 243 243 243 243 243	5762016 2280798 517104 11080800 3693600 22900320 7387200
Laptops Computers Printers Coffee machine Cleaning 6A Sockets 16A Sockets	48 19 8 6 4 124	65 65 35 1000 500 100 1000	8 8 8 8 8 8 8 8 8	0.95 0.95 0.95 0.95 0.95 0.95	23712 9386 2128 45600 15200 94240 30400	243 243 243 243 243 243 243 243	5762016 2280798 517104 11080800 3693600 22900320 7387200 53621838
Laptops Computers Printers Coffee machine Cleaning 6A Sockets 16A Sockets LUNCHTIME	48 19 8 6 4 124 4	65 65 35 1000 500 100 1000	8 8 8 8 8 8 8 8 8	0.95 0.95 0.95 0.95 0.95 0.95 0.95	23712 9386 2128 45600 15200 94240 30400	243 243 243 243 243 243 243 243 243 70tal energy	5762016 2280798 517104 11080800 3693600 22900320 7387200 53621838 189540
Laptops Computers Printers Coffee machine Cleaning 6A Sockets 16A Sockets LunchtTIME Laptops Computers	48 19 8 6 4 124 4 4 4 4 8 19	65 65 35 1000 500 100 1000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 1 1	0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	23712 9386 2128 45600 15200 94240 30400	243 243 243 243 243 243 243 243 Total energy 243 243	5762016 2280798 517104 11080800 3693600 22900320 7387200 53621838 189540 75026.25
Laptops Computers Printers Coffee machine Cleaning 6A Sockets 16A Sockets Laptops Computers Printers	48 19 8 6 4 124 4 4 4 8 19 8	65 65 35 1000 500 100 1000 1000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	23712 9386 2128 45600 15200 94240 30400 780 308.75 70	243 243 243 243 243 243 243 243 243 243	5762016 2280798 517104 11080800 22900320 7387200 53621838 189540 75026.25 17010
Laptops Computers Printers Coffee machine Cleaning 6A Sockets 16A Sockets Laptops Computers Printers Coffee machine	48 19 8 6 4 124 4 4 4 8 19 8 8 6	65 65 35 1000 500 100 1000 1000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	23712 9386 2128 45600 15200 94240 30400 780 308.75 70 1500	243 243 243 243 243 243 243 243 243 243	5762016 2280798 517104 11080800 22900320 7387200 53621838 189540 75026.25 17010 364500
Laptops Computers Printers Coffee machine Cleaning 6A Sockets 16A Sockets 16A Sockets UNCHTIME Laptops Computers Printers Coffee machine Cleaning	48 19 8 6 4 124 4 4 4 8 19 8 6 6	65 65 35 1000 500 100 1000 1000 500	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	23712 9386 2128 45600 15200 94240 30400 780 308.75 70 1500 500	243 243 243 243 243 243 243 243 243 243	5762016 2280798 517104 11080800 22900320 7387200 53621838 189540 75026.25 17010 364500 121500
Laptops Computers Printers Coffee machine Cleaning 6A Sockets 16A Sockets Laptops Computers Printers Coffee machine Cleaning 6A Sockets	48 19 8 6 4 124 4 4 4 8 19 8 6 4 124	65 65 35 1000 500 100 1000 1000 65 65 65 35 1000 500 100	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	23712 9386 2128 45600 15200 94240 30400 780 308.75 70 1500 500 3100	243 243 243 243 243 243 243 243 243 243	5762016 2280798 517104 11080800 3693600 22900320 7387200 53621838 189540 75026.25 17010 364500 121500 753300
Laptops Computers Printers Coffee machine Cleaning 6A Sockets 16A Sockets 16A Sockets UNCHTIME Laptops Computers Printers Coffee machine Cleaning	48 19 8 6 4 124 4 4 4 8 19 8 6 6	65 65 35 1000 500 100 1000 1000 65 65 65 35 1000 500 100	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	23712 9386 2128 45600 15200 94240 30400 780 308.75 70 1500 500 3100	243 243 243 243 243 243 243 243 243 243	5762016 2280798 517104 11080800 22900320 7387200 53621838 189540 75026.25 17010 364500 121500 753300 243000
Laptops Computers Printers Coffee machine Cleaning 6A Sockets 16A Sockets Laptops Computers Printers Coffee machine Cleaning 6A Sockets 16A Sockets	48 19 8 6 4 124 4 4 124 48 19 8 6 4 124 4	65 65 35 1000 500 100 1000 1000 65 65 65 35 1000 500 100	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	23712 9386 2128 45600 15200 94240 30400 780 308.75 70 1500 500 3100	243 243 243 243 243 243 243 243 243 243	5762016 2280798 517104 11080800 3693600 22900320 7387200 53621838 189540 75026.25 17010 364500 121500 753300
Laptops Computers Printers Coffee machine Cleaning 6A Sockets 16A Sockets Laptops Computers Printers Coffee machine Cleaning 6A Sockets 16A Sockets 16A Sockets	48 19 8 6 4 124 4 4 4 8 19 8 6 4 124 4	65 65 35 1000 500 100 1000 65 65 65 35 1000 500 100		0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	23712 9386 2128 45600 15200 94240 30400 780 308.75 70 1500 500 3100	243 243 243 243 243 243 243 243 243 243	5762016 2280798 517104 11080800 22900320 7387200 53621838 189540 75026.25 17010 364500 121500 753300 243000
Laptops Computers Printers Coffee machine Cleaning 6A Sockets 16A Sockets Laptops Computers Printers Coffee machine Cleaning 6A Sockets 16A Sockets 16A Sockets	48 19 8 6 4 124 4 4 124 4 8 6 4 124 4 124 4 8	65 65 35 1000 500 100 1000 65 65 35 1000 500 1000 1000		0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	23712 9386 2128 45600 15200 94240 30400 780 308.75 70 1500 500 3100 1000	243 243 243 243 243 243 243 243 243 243	5762016 2280798 517104 11080800 22900320 7387200 53621838 189540 75026.25 17010 364500 121500 753300 243000 1763876.25
Laptops Computers Printers Coffee machine Cleaning 6A Sockets 16A Sockets Laptops Computers Printers Coffee machine Cleaning 6A Sockets 16A Sockets 16A Sockets 16A Sockets	48 19 8 6 4 124 4 4 124 4 8 6 4 124 4 124 4 124 4 8 19	65 65 35 1000 500 100 1000 65 35 1000 500 100 1000		0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	23712 9386 2128 45600 15200 94240 30400 780 308.75 70 308.75 70 1500 500 3100 3100 3100	243 243 243 243 243 243 243 243 243 243	5762016 2280798 517104 11080800 3693600 22900320 7387200 53621838 189540 189540 189540 17010 364500 121500 121500 7753300 243000 1763876.25
Laptops Computers Printers Coffee machine Cleaning 6A Sockets 16A Sockets Laptops Computers Printers Coffee machine Cleaning 6A Sockets 16A Sockets 16A Sockets	48 19 8 6 4 124 4 4 124 4 8 6 4 124 4 124 4 8	65 65 35 1000 500 100 1000 65 65 35 1000 500 1000 1000		0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.2	23712 9386 2128 45600 15200 94240 30400 780 308.75 70 1500 500 3100 1000 1000	243 243 243 243 243 243 243 243 243 243	5762016 2280798 517104 11080800 3693600 22900320 7387200 53621838 189540 75026.25 17010 364500 121500 753300 243000 1763876.25 341172 341172 135047.25 30618
Laptops Computers Printers Coffee machine Cleaning 6A Sockets 16A Sockets Laptops Computers Printers Coffee machine Cleaning 6A Sockets 16A Sockets 16A Sockets 16A Sockets	48 19 8 6 4 124 4 4 124 4 8 6 4 124 4 124 4 124 4 8 19	65 65 35 1000 500 1000 1000 65 35 1000 500 1000 1000 1000		0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	23712 9386 2128 45600 15200 94240 30400 780 308.75 70 1500 500 3100 1000 1000	243 243 243 243 243 243 243 243 243 243	5762016 2280798 517104 11080800 3693600 22900320 7387200 53621838 189540 75026.25 17010 364500 121500 753300 243000 1763876.25 341172 341172 135047.25 30618
Laptops Computers Printers Coffee machine Cleaning 6A Sockets 16A Sockets Laptops Computers Printers Coffee machine Cleaning 6A Sockets 16A Sockets 16A Sockets 16A Sockets 16A Sockets Computers Computers Computers Computers Printers	48 19 8 6 4 124 4 4 4 8 6 4 124 4 124 4 124 4 8 6 6 4 124 124 8 8 6 8 8 6 6 4 124 8 8 6 6 19 8 8 6 19 8 8 6 19 8 19 8 19	65 65 35 1000 500 1000 1000 65 35 1000 500 1000 1000 1000		0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.2	23712 9386 2128 45600 15200 94240 30400 780 308.75 70 1500 500 3100 1000 1404 555.75 126 2700	243 243 243 243 243 243 243 243 243 243	5762016 2280798 517104 11080800 3693600 22900320 7387200 53621838 189540 75026.25 17010 364500 121500 753300 243000 1763876.25 341172 135047.25 30618 656100
Laptops Computers Printers Coffee machine Cleaning 6A Sockets 16A Sockets 16A Sockets LunchTIME Laptops Computers Printers Coffee machine Cleaning 6A Sockets 16A Sockets 16A Sockets TIME BEFORE SCHOOI Laptops Computers Printers Computers Printers Computers Printers Computers	48 19 8 6 4 124 4 4 4 8 6 4 124 4 124 4 124 4 124 8 6 6	65 65 35 1000 500 100 1000 1000 500 500 100 100		0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.2	23712 9386 2128 45600 15200 94240 30400 780 308.75 70 1500 500 3100 1000 1404 555.75 126 2700 900	243 243 243 243 243 243 243 243 243 243	5762016 2280798 517104 11080800 3693600 22900320 7387200 53621838 189540 75026.25 17010 364500 121500 753300 243000 1763876.25 341172 135047.25 30618 656100 218700
Laptops Computers Printers Coffee machine Cleaning 6A Sockets 16A Sockets 16A Sockets Laptops Computers Printers Coffee machine Cleaning 6A Sockets 16A Sockets 16A Sockets TIME BEFORE SCHOOI Laptops Computers Printers Coffee machine Cleaning	48 19 8 6 4 124 4 4 4 8 19 8 6 4 124 124 4 124 4 8 6 4 8 19 8 6 4 4 8 19 8 6 4 4 8 19 8 6 4 4 8 19 8 6 6 4 124 4 8 19 8 19 8 19 8 19 8 19 8 19 8 19 8	65 65 35 1000 500 100 1000 65 65 65 35 1000 100 1000 1000 1000 1000 1000 1		0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.2	23712 9386 2128 45600 15200 94240 30400 780 308.75 70 1500 500 3100 1500 500 3100 1000	243 243 243 243 243 243 243 243 243 243	5762016 2280798 517104 11080800 3693600 22900320 7387200 53621838 189540 75026.25 17010 364500 121500 753300 243000 1763876.25 341172 135047.25 30618 656100 218700
Laptops Computers Printers Coffee machine Cleaning 6A Sockets 16A Sockets 16A Sockets Laptops Computers Printers Coffee machine Cleaning 6A Sockets 16A Sockets 16A Sockets Computers Printers Computers Printers Computers Printers Computers Printers Computers Printers Coffee machine Cleaning 6A Sockets	48 19 8 6 4 124 4 4 4 8 6 4 19 8 6 4 124 4 8 6 4 19 8 6 4 124	65 65 35 1000 500 100 1000 65 65 65 35 1000 100 100 1000 1000 1000 1000 10		0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.2	23712 9386 2128 45600 15200 94240 30400 780 308.75 70 1500 500 3100 1500 500 3100 1000	243 243 243 243 243 243 243 243 243 243	5762016 2280798 517104 11080800 3693600 22900320 7387200 53621838 189540 75026.25 17010 364500 121500 753300 243000 1763876.25 341172 135047.25 30618 656100 218700
Laptops Computers Printers Coffee machine Cleaning 6A Sockets 16A Sockets 16A Sockets Laptops Computers Printers Coffee machine Cleaning 6A Sockets 16A Sockets 16A Sockets Computers Printers Computers Printers Computers Printers Computers Printers Computers Printers Coffee machine Cleaning 6A Sockets	48 19 8 6 4 124 4 4 4 8 6 4 19 8 6 4 124 4 8 6 4 19 8 6 4 124	65 65 35 1000 500 100 1000 65 65 65 35 1000 100 100 1000 1000 1000 1000 10		0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.2	23712 9386 2128 45600 15200 94240 30400 780 308.75 70 1500 500 3100 1500 500 3100 1000	243 243 243 243 243 243 243 243 243 243	5762016 2280798 517104 11080800 3693600 22900320 7387200 53621838 189540 75026.25 17010 364500 121500 753300 243000 1763876.25 341172 135047.25 30618 656100 218700
Laptops Computers Printers Coffee machine Cleaning 6A Sockets 16A Sockets 16A Sockets Laptops Computers Printers Coffee machine Cleaning 6A Sockets 16A Sockets 16A Sockets Computers Printers Computers Printers Computers Printers Computers Printers Computers Printers Coffee machine Cleaning 6A Sockets	48 19 8 6 4 124 4 4 4 8 6 4 19 8 6 4 124 4 8 6 4 19 8 6 4 124	65 65 35 1000 500 100 1000 65 65 65 35 1000 100 100 1000 1000 1000 1000 10		0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.2	23712 9386 2128 45600 15200 94240 30400 780 308.75 70 1500 500 3100 1500 500 3100 1000	243 243 243 243 243 243 243 243 243 243	5762016 2280798 517104 11080800 3693600 22900320 7387200 53621838 189540 75026.25 17010 364500 121500 753300 243000 1763876.25 341172 135047.25 30618 656100 218700

Appendix table 5: Energy calculations of design case

HVAC	1	925	9	1	16650	365	6077250
							6077.2
DOAS SYSTEM							5088250
							5088.2
INTERIOR LIGHTING							18245995.2
							18245.9952
EXTERIOR LIGHTING							2000000
							2000
WATER HEATING		(Heat pump)			8000	243	1944000
							1944
IOT SYSTEM		30	24		720	243	174960
							174.96
R&D Block							1500.28
						Total	213994.7037
						Area	8072
						EPI	26.51074129

Appendix table 6: Energy calculations

Lighting load calculation

	Alea	Target illuminance	No.of spaces	Lumens	Fixture type	No. of fixtures / space	Total fixtures	Waffage	No.of hours	Diversity factor	Energy consumed daily	Energy consumed anually
STUDENT ZONE												
Classrooms	60	300 lux	46	18000	Wipro High Lumen 22-Watt LED	4	184	22	5	0.9	18216	4426488
Canteen Jr.	100	150 lux	1	15000	Wipro garnet	8	8	20	5	0.9	720	174960
Canteen Sr.	50	150 lux	1	7500	Wipro garnet	4	4	20	5	0.9	360	87480
Labs	70	300 Jux	5	21000	Wipro Garnet Wave Slim	11	55	20	5	0.9	4950	1202850
Art room	70	300 lux	1	21000	Wipro High Lumen 22-Watt LED	9	9	22	5	0.9	891	216513
Activity room	60	300 Jux	3	18000	Wipro High Lumen 22-Watt LED	8	24	22	5	0.9	2376	577368
Library	300	300 lux	1	90000	Green LEDi	45	45	18	5	0.9	3645	88573
MPH	800	150 lux	1	120000	Green LEDi	60	60	18	5	0.9	4860	1180980
Printing room	10	150 lux	4	1500	Green LEDi (600lm)	3	12	18	5	0.9	972	236196
Kitchen	30	300 lux	1	9000	Wipro High Lumen 22-Watt LED	4	4	22	5	0.9	396	96228
Seminar hall	200	150 lux	1	30000	Green LEDi	15	15	18	5	0.9	1215	295245
R&D Block	150	500 lux	1	75000	Green LEDi	35	35	18	5	0.9	2835	688903
Toilets	52.5	100 lux	8	5250	Wipro garnet	3	24	20	5	0.9	2160	524880
LUNCH TIME												
Classrooms	60	300 lux	46	18000	Wipro high lumen 22-Watt LED	4	184	22	1	0.2	809.6	196732.8
Canteen Jr.	100	150 lux	1		Wipro garnet	8	8	20	1	0.2	32	7770
Canteen Sr.	50	150 lux	1	7500	Wipro garnet	4	4	20	1	0.2	16	3888
Labs	70	300 lux	5	21000	Wipro Garnet Wave Slim	11	55	20	1	0.2	220	53460
Art room	70	300 lux	1	21000	Wipro High Lumen 22-Watt LED	9	9	22	1	0.2	39.6	9622.8
Activity room	60	300 lux	3	18000	Wipro High Lumen 22-Watt LED	8	24	22	1	0.2	105.6	25660.8
Library	300	300 lux	1	90000	Green LEDi	45	45	18	1	0.2	162	39366
MPH	800	150 lux	1	120000	Green LEDi	60	60	18	1	0.2	216	52488
Printing room	10	150 lux	4	1500	Green LEDi (600lm)	3	12	18	1	0.2	43.2	10497.6
Kitchen	30	300 lux	1	9000	Wipro High Lumen 22-Watt LED	4	4	22	1	0.2	17.6	4276.8
Seminar hall	200	150 lux	1	30000	Green LEDi	15	15	18	1	0.2	54	1312
R&D Block	150	500 lux	1	75000	Green LEDi	35	35	18	1	0.2	126	30618
Toilets	52.5	100 lux	8	5250	Wipro garnet	3	24	20	1	0.2	96	23328
OFFICE ZONE												
Staffrooms	30	300 Jux	4	9000	Wipro garnet	5	20	20	8	0.9	2880	69984
Infirmary		300 lux	1		Wipro Garnet Wave Slim	3					432	
Principal		300 lux	1		Wipro garnet	3					432	10497
HOD room		300 lux	4		Green LEDi	2					1036.8	
Admin		300 lux	1		Wipro garnet	9	9				1296	
Staff commons		300 lux	1		Wipro garnet	3	3		8		432	
Circulation area		150 Jux	1		Green LEDi	150	150	18	8	0.9	19440	472392
LUNCH TIME				000000	GIOGITEEDI							
Staffrooms	30	300 Jux	4	9000	Wipro garnet	5	20	20	1	0.3	120	2916
Infirmary		300 lux	1		Wipro Garnet Wave Slim	3			1		18	
Principal		300 lux	1		Wipro garnet	3	3				18	
HOD room		300 lux	4		Green LEDi	2	8	18	1	0.3	43.2	10497.
Admin		300 lux	1		Wipro garnet	9	9				54	
Staff commons		300 lux	1		Wipro garnet	3	3		1		18	
Circulation area		150 Jux	1		Green LEDi	150	150		1		810	
TIME BEFORE SCHO				000000								
Staffrooms		300 lux	4	9000	Wipro garnet	5	20	20	1	0.7	280	68040
Infirmory		300 lux	1		Wipro Garnet Wave Slim	3	3				42	
Principal		300 lux	1		Wipro garnet	3	3				42	
HOD room		300 lux	4		Green LEDi	2					100.8	
Admin		300 lux	1		Wipro garnet	9	9			0.7	126	
Staff commons		300 lux	1		Wipro garnet	3	3				42	
Circulation area		150 lux	1		Green LEDi	150	150				1890	
												18245995.
											Total lighting energy	18245.9952 KWh

Appendix table 7: Lighting load calculations

Base case energy break-up

Heat pump load calculation

For 30 Kw nominal capacity , energy input = 6.83 Kw

For 1000 litres of water , i.e , 1000 kg , heat required to rise its temperature by 30 degree centigrade is Q= m . Cp . T

- = 1000 . 4.18 X 30
- = 125400 KJ

Amount of time required for heating = Heat required / capacity

- = 125400 KJ / 30 KW
- = 4180 seconds
- = 1.16 hours

Work input = 6.83 x 1.16 = 7.922 = 8KWh

Thus we need to supply 8 KWh per day to raise the temperature of 1000l of water by 30 degrees centigrade.

Lighting equipment optimisation

Fixture type	Lumens	Wattage	Luminous efficacy	As per GRIHA guidelines , the		
Wipro High Lumen 22-Watt LED	4800	22	218 lm/watt	lighting equipment chosen		
Wipro garnet	1900	20	95 lm/watt	have luminous efficacy of at		
Wipro Garnet Wave Slim	2058	20	102.9 lm/watt	,		
Green LEDi	2000	18	111.1 lm/watt	least 75 lumens/ watt		

Wipro high lumen LED	Wipro Garnet	Wipro Garnet wave slim	Green LEDi
		0	

Equipment optimisation

Equipment	Model chosen	Wattage	Standard equipment wattage
Smart boards	MAXHUB Smart board	220	340
Laptops	DELL TCO certified (education)	150	300
Computers	DELL inspiron Desktop TCO certified	45	500
Printers	Canon PIXMA G5020	35	50
Projectors	BENQ V7050i	500	800
Microwave	Panasonic Genius Sensor	950	1000
Induction	HP4920 Induction cook top	1500	3000
Coffee machine	Russel hobbs coffee maker	1000	1300
Ceiling fans	Crompton energion HS (BEE 5 star)	34	75
CC Cameras	CP Plus CCTV Camera	5	40
Refrigerator	LG GBB92MCBAP (A grade acc. to EU)	28.4	100
Water purifier	HUL Pureit Eco Water Saver	36	40

Equipment for the project are chosen from multiple options available , based on their efficiency , energy consumption & cost.

Appendix table 8: Equipment optimization

DOAS Calculations

DOAS system is sized seperately for MPH and School zone seperately. Dew point temperature for DOAS system - 25.8 degrees celcius CFM for MPH - 6640 CFM for School zone - 3600

Solar panels

Solar panel energy generation is calculated for various tilt angles and the most efficient tilt angle of 28 degrees is chosen.

LG Solar panels , LG440N2T-E6 are chosen for the project , amongst all the available options , due to its 19.8% highest efficiency .

Warranty of the solar panels is 25 years.

It Absorbs up to 30% more light than conventional models.

Solar panels

Month	No.of working days	Energy consumption	Energy generation
January	20 days	18290.14561	20015
Febraury	23 days	21033.66745	18981
March	24 days	21948.17473	22698
April	24 days	21948.17473	18611
May	24 days	21948.17473	17362
June	4 days	3658.029122	16050
July	21 days	19204.65289	16401
August	23 days	21033.66745	16623
September	24 days	21948.17473	17178
October	15 days	13717.60921	20247
November	22 days	20119.16017	20176
December	19 days	17375.63833	18147
		Total	222489 KWh/yr

Appendix table 9: Energy generation through solar panels

Impulse turbine

Month	Harvested rainwater in cubic metres	Net power generated
January	43	18 KWh
Febraury	97	41 KWh
March	232	97 KWh
April	128	53 KWh
May	183	76 KWh
June	1818	760 KWh
July	2185	913 KWh
August	1914	800 KWh
September	1342	561 KWh
October	491	205 KWh
November	58	24 KWh
December	23	10 KWh
	Total = 8514	3558 KWh

Appendix table 10: Power generated through impulse turbine

Assam Net metering guidelines

The following information and guidelines are sourced from AERC (GRID INTERACTIVE SOLAR PV SYSTEMS), REGULATIONS ,2019.

Our solar PV system is designed with a grid tie inverter and an exim meter (net meter), so that the net energy after consumption is given back to the grid and is drawn from the grid in case of shortfall. Solar PV is owned by the Gyandeep foundation.

Solar panel generation capacity - 222500 KWh = 222.5 KWp (Our installation capacity falls under the eligibility (1KWp-1000KWp) to participate in grid interactive solar PV systems of Assam).

A grid tie inverter is used as a protection against islanding and

Grid tie inverter capacity - 30 KW

HVAC load optimisation for design case

	SOLA	R GAIN - GLAS	S		-	n
ltem	Direction	Area (ft ²)	∆T (°F)	Correction fator	SHGC	BTU / Hour
Glass	N	0	39	1.3	0.47	0
Glass	NE		11	1.3	0.47	0
Glass	E	0	11	1.3	0.47	0
Glass	SE		11	1.3	0.47	0
Glass	S	107	11	1.3	0.47	693
Glass	SW		66	1.3	0.47	0
Glass	W	0	158	1.3	0.47	0
Glass	NW		158	1.3	0.47	0
Skylight	والمتحد كالمتحد فع		107	1.3	0.47	0
S	DLAR & TRANSM	ISSION GAIN -	WALL & RO			
Item	Direction	Area (ft ²)	ΔT (°F)	Correction fator	U-value	BTU / Hour
Wall	Ň	2600	4	3	0.28	5096
Wall	NE		10	3	0.28	0
Wall	E	367	18	3	0.28	2156
Wall	SE		18	3	0.28	0
Wall	S	2493	16	3	0.28	13263
Wall	SW		14	3	0.28	0
Wall	W	367	12	3	0.28	1540
Wall	NW		6	3	0.28	0
Roof		13024	32	3	0.28	127635
Т	RANSMISSION O			DF		
Item		Area (ft ²)	ΔT (°F)		U-value	BTU / Hour
All Glass		107	7.4	9	0.497	394
Door	5	21	7.4	2. V	1.13	176
Partition	10		2.4	2		0
Ceiling	- i		2.4			0
Floor			2.4	2		0
		AL SENSIBLE H	EAT			
	Quantity	Unit rates				BTU / Hour
People	1200	220	j			264000
Equip (W)	3000	3.41			1	10230
Lights (W)	1000	3.41			1	3410
Supply air fan gain	5%					21430
		NAL LATENT HE	AT			
19	Quantity	Unit rates				BTU / Hour
People	200	205				41000
	OUT	SIDE AIR HEAT				
<u>.</u>	Flow rate (CFM)	∆T(°F) & ∆g/lb	Convesion factor			BTU / Hour
Sensible	2117	7.4	1.08			16919
Latent	2117	5.0	0.68			7198
			Total R	oom Sensil	ole heat	466940
				Room Late		48198
				total heat,		515137
			AIR CONDIT		and the second se	
			ATK CONDIT	TONING TO	NNAGE	42.93

Appendix table 11 : HVAC load optimisation

HVAC load is optimized through various factors such as choosing the materials for the wall and roof with a low u value, the orientation of the building, choosing efficient equipment and also using a double-glazed window which has a solar heat gain coefficient of 0.47. So, the heat gain through various means is reduced.

The load is further optimised by creating set points through which HVAC is operated.

RESILIENCE TIME - Flood					
APPLIANCE	Quantity	Wattage (W)	No.of hours / day	Diversity fa	Energy consumed daily (W)
Induction	2	1500	24	0.95	68400
6A Sockets	50	100	24	0.95	114000
PHE	1	15	24	0.95	342
CC Cameras	78	5	24	0.95	8892
Refrigerator	4	28.4	24	0.95	2590.08
Fire alarm	85	45	24	0.95	87210
Water purifier	8	36	24	0.95	6566.4
Jockey pumps	1	365.52	24	0.95	8333.856
Hydrant pumps	1	365.52	24	0.95	8333.856
STP pumps	1	365.52	24	0.95	8333.856
Exhaust fans	14	16	24	0.95	5107.2
INTERIOR LIGHTING					90335.3
101					720
			1	Total energ	409164.548
					409.164548
				For 4days	1636.658192
					1600 KWh

Appendix table 12 : Energy requirements during flood

RESILIENCE TIME - Earthquake					
APPLIANCE	Quantity	Wattage (W)	No.of hours / da	Diversity factor	Energy consumed daily (W
Induction	2	1500	24	0.95	68400
Celling fans	195	28	24	0.95	124488
CC Cameras	78	5	24	0.95	8892
Fire alarm	85	45	24	0.95	87210
Jockey pumps	1	365.52	24	0.95	8333.856
Hydrant pumps	1	365.52	24	0.95	8333.856
STP pumps	1	365.52	24	0.95	8333.856
Exhaust fans	14	16	24	0.95	5107.2
IOT					720
6A Sockets	50	100	24	0.95	114000
				Total energy	433818.768
			-		433.818768
				For 3 days	1301,456304
	1.A.	11			1600 kwh

Appendix table 13: Energy requirements during earthquake

RESILIENCE TIME - THUNDER	R STORM				
APPLIANCE	Quantity	Wattage (W)	No.of hours / da	Diversity factor	Energy consumed daily (W
Celling fans	195	28	24	0.95	124488
CC Cameras	78	5	24	0.95	8892
Fire alarm	85	45	24	0.95	87210
Jockey pumps	1	365.52	24	0.95	8333.856
Hydrant pumps	1	365.52	24	0.95	8333.856
STP pumps	1	365.52	24	0.95	8333.856
6A Sockets	50	100	24	0.95	114000
IOT		(24 	720
				Total energy	360311.568
	-				360.311568
				For 4 days	1441.246272
					1450 KWh

Appendix table 13: Energy requirements during thunderstorms

RESILIENCE TIME - FIRE					
APPLIANCE	Quantity	Wattage (W)	No.of hours / day	Diversity fa	Energy consumed daily (W)
Celling fans	195	28	24	0.95	124488
CC Cameras	78	5	24	0.95	8892
Fire alarm	85	45	24	0.95	87210
Jockey pumps	1	365.52	24	0.95	8333.856
Hydrant pumps	1	365.52	24	0.95	8333.856
STP pumps	1	365.52	24	0.95	8333.856
Exhaust fans	14	16	24	0.95	5107.2
IOI					720
6A Sockets	50	100	24	0.95	114000
				Total energ	365418.768
					365.418768
-				For 3 days	1096.256304
					1100 KWh

Appendix table 14 : Energy requirements during fire

12.9 WATER CALCULATIONS

BASE CASE	LPF		Minutes	No. of uses	Consumption per day in Its	GREY WATER	BLACK WATER
Water closets (Full flusing)							
wc solid	6	1 flush		1	6		100%
wc liquid	3	1 flush	1	2	6		100%
Urinals (male)	2.2	1 flush	1	3	6.6		100%
	LPM						
Basin mixer	8	15 seconds	0.25	3	6	100%	
Health faucets	8	15 seconds	0.25	2	4		100%
Shower head	15	8 minutes	8	0.1	12	100%	
Kitchen faucet	6	15 seconds	0.25	1.25	1.875		100%
Cooking	5			0.5	2.5		100%
Drinking	2			half day	2		100%
Washing	6			0.2	1.2	100%	
cleaning	3				3	100%	
TOTAL			- 10	n	45.175	2	

Appendix Table 15: Base case breakup in normal condition

PROPOSED CASE	LPF		Minutes	No. of uses	Consumption per day in Its	GREY WATER	BLACK WATER
Water closets (compost toilet)							
wc solid	0.28	1 flush		1	0.28		100%
wc liquid	0.28	1 flush	1	3	0.84		100%
Urinals (male)	0	1 flush	1	3	0		100%
	LPM						
Sensor faucet	1.8	15 seconds	0.25	3	1.35	100%	
Health faucets	4	15 seconds	0,25	2	2		100%
Shower head	7.58	8 minutes	8	0.1	6.064	100%	
Kitchen faucet (sensor)	3	15 seconds	0.25	1.25	0.9375		100%
cooking	5			0.32	1.6		100%
drinking	2				2		100%
cleaning	1,5			243	1,5	100%	
Washing	2			0.1	0.2	100%	
Total					16.7715		

Appendix table 16 : Design case breakup in normal condition

Base	case	occupants activity	Proposed case				
Quantity in Its for 2000 people	quantity in I/person/day		quantity in l/person/day	Quantity in Its for 2000 people			
3000	6	handwash	1.35	675			
1000	2	drinking	2	1000			
2150	4.3	kitchen	2.63	1315	Number of		
6000	12	shower	6	3000	Occupants =2000	BASE CASE	DESIGN CASE
1500	3	cleaning	1.5	750	Per Capita Daily	45L	16.264L
2600	5.2	washing	2.4	1200	Consumption(L)		
3300	6.6	urinal flushing	0	0	Total Daily Consumption(L)	90,000L	32,528L
3000	6	wc flushing	0.84	420	Total Yearly		70.0/70/1
22550	45.1		16.72	8360	Consumption(L)	2,18,70,000L	79,04,304L

Appendix table 17 : Occupants activity in normal conditions

Month	Days in month	working days in a month	Rainfall (mm)	Effective rain (mm)	Harvested water (I)	Muncipality water supply (I)	Primary demand (I)	total storage (I)	Capacity of rain water tank(total storage - fire tank, ugt, oht storage)
July	31	21	570	565	2257175	0	635880	1621295	1455295
August	31	23	500	495	1977525	0	696440	2902380	2736380
September	30	24	352	347	1386265	0	726720	3561925	3395925
October	31	15	132	127	507365	0	454200	3615090	3449090
November	30	22	20	15	59925	0	666160	3008855	2842855
December	31	19	11	6	23970	0	575320	2457505	2291505
January	31	20	16	11	43945	0	605600	1895850	1729850
February	28	23	30	25	99875	0	696440	1299285	1133285
March	31	24	65	60	239700	0	726720	812265	646265
April	30	24	38	33	131835	0	726720	217380	51380
May	31	24	285	280	1118600	0	726720	609260	443260
June	30	4	475	470	1877650	0	121120	2365790	2199790
Total	365	243	2494	2434	9723830	0	7358040		
Total in KI					9720		7360		

Appendix table 18: Harvested and demand of fresh water

BASE CASE	LPF		Minutes	No. of uses	Consumption per day	GREY WATER	BLACK WATER
Water closets (Full flusing)							
wc solid	6	2 flush		2	12		100%
wc liquid	3	1 flush	1	4	12		100%
Urinals (male)	3.8	1 flush	1	3	11.4		100%
	LPM						
Basin mixer	6	15 seconds	0.25	12	18	100%	
Health faucets	6	15 seconds	0.25	3	4.5		100%
Shower head	10	8 minutes	8	0.25	20	100%	
Kitchen faucet	10	15 seconds	0.25	1.25	3.125		100%
Cooking	1.9			1	1.9		100%
Drinking	5			1	5		100%
Washing	9.5			1	9.5	100%	
cleaning	10				10	100%	
TOTAL					95.4		

Appendix table 19: Base case breakup in disaster condition

PROPOSED CASE	LPF		Minutes	No. of uses	Consumption per day	GREY WATER	BLACK WATER
Water closets (compost toilet)							
wc solid	0.28	1 flush		2	0.56		100%
wc liquid	0.28	1 flush	1	4	1.12		100%
Urinals (male)	0	1 flush	1	3	0		100%
	LPM						
Sensor faucet	1.8	15 seconds	0.25	12	5.4	100%	
Health faucets	4	15 seconds	0.25	3	3		100%
Shower head	7.58	8 minutes	8	0.25	15.16	100%	
Kitchen faucet (sense	4	15 seconds	0.25	1.25	1.25		100%
cooking	3.75			1	3.75		100%
drinking	5			1	5		100%
deaning	5			243	5	100%	
Washing	11			1	11	100%	
Total	e (* *			0	50.68		

Appendix table 20: Design case breakup in disaster condition

Base	e case	occupants activity	Propos	ed case
Quantity in Its for 500 people	quantity in I/person		quantity in I/person	Quantity in Its for 500 people
9000	18	handwash	5.4	2700
2500	5	drinking	5	2500
2500	5	kitchen	5	2500
10000	20	shower	15	7500
5000	10	cleaning	5	2500
7000	14	washing	14	7000
5700	11.4	urinal flushing	0	0
6000	12	wc flushing	1.12	560
47700	95.4		50.52	25260

Appendix table 21: Occupants activity in disaster condition

TANKS	SIZE (Litres)	water to be stored in liters	Volume(m3)	Dimensions of tank
	UNDERGROUND TANK			
1	Fresh water (Treated rain water)	50000	50	2 x 2.4 m dia x 0.5m length
2	Treated Water (Recycled greywater +Surface runoff rainwater)	37000	37	5x4x2
3	Fire water tank	100000	100	5x6.2x3
	OVERHEAD TANK			Ĩ.
1	Fresh water (Treated rain water)	16264	16.264	3x 3.7x1.5
2	Treated Water (Recycled greywater +Surface runoff rainwater)	2000	2	2x1x1
	RAIN WATER TANK	3400000	3400	40x29x3

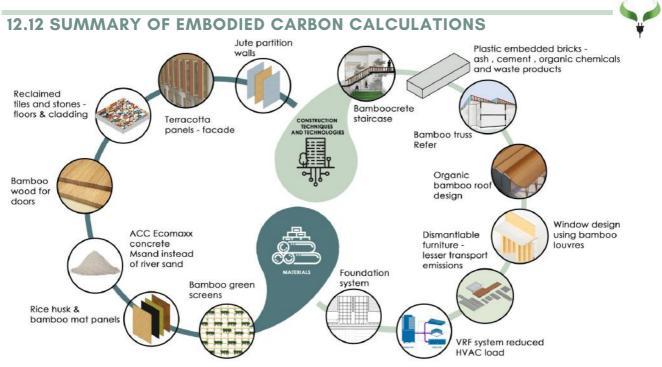
Appendix table 22: Tank sizing

12.10 EXTRA COST OF EEFFICIENT EQUIPMENT USED IN THE DESIGN CASE

Sno	Item	Base Case Cost (INR Million)	Design Case Cost (INR Million)	Cost Difference
1	Movable Bamboo Parition Walls 110 mm thick		0.1	0.1
2	Rotatable Acoustic partitions		0.2	0.2
3	Light Shelves for Windows		0.1	0.1
4	Structural Glazing - North Light Roof		5.6	5.6
5	Shading Device Bamboo - North		0.4	0.4
6	Shading Device Bamboo - South with glazing		0.8	0.8
7	Shading Device Bamboo - East with glazing		0.3	0.3
8	Shading Device Bamboo - West		0.2	0.2
	Sandwich Panels for Roofing		2.9	2.9
10	Bamboo Truss System - North Light		1.6	1.6
11	Solar PV System	2	6.1	4.1
12	Miscellaneous Items		1.2	1.2
13	Heat Pump		0.3	0.3
	ECO STP		1.8	-
15	Underground Water Tank PVC		0.3	0.3
16	Overhead Water Tank PVC		0	0
17	Biogas Plant		0.4	0.4
18	Impulse Turbine		0.2	0.2
19	Rain Water Harvesting	1.7	3.4	1.7
20	Rainwater filters		0.4	0.4
21	CCTV System	0.6	1.6	1
22	Building Management System	1.2	3.2	2
23	Waterleak detection system	0.1	0.1	0
24	Water Level Detection Sensors		0	0
12042	LAN System	4.2	5.1	0.9
	Conference System		7.5	2
	Street lighting with LED		0.8	
	Illuminated Signs		0.1	
	Earthquake Desks		5.5	
	Indoor Plants		0	
	Bamboo Plantation		0	
	Total Cost			40.4

	Comparison of the second second	Spent (INR Base Case	Million) -	and the second se	Spent (INR Design Cas	Second second second	Amount	Saved (INR	(Million) -	Design Case
	Year 1	Year 2	Year 35	Year 1	Year 2	Year 35	Year 1	Year 2	Year 35	Total Saved - 35 yrs
Maintenance & Repair Costs	12.28	12.28	12.28	9.21	9.21	9.21	3.07	3.07	3.07	107.45
Elecrical Supply Costs	3.6	3.6	3.6	0	0	0	3.6	3.6	3.6	126
Water Supply Costs	2.9	2.9	2.9	0	0	0	2.9	2.9	2.9	101.5
Total Amount Saved (35 years)	334.95									
Total Amount Invested in Design Case (after repayment of loans)	332.2215	5								

Appendix table 23: Extra cost of energy, water, carbon efficient equipment used in Design Case + ROI on entire building Investment



12.11 SUMMARY OF COST ESTIMATE

Proj	ect Summary				35	Tana I		
S.No.	Particulars	Definition		timate (Projec SOR basis)	ct Partner /	Propos	ed Design Est	imate
5.NO.	Particulars	Definition	Amount in Million INR	%	Amount (INR per sqm)	Amount in Million INR	%	Amount (INR per sqm)
1	Land	Cost of land purchased or leased by the Project Partner	2.50	0.8%	310	2.50	0.8%	310
2	Civil Works	Refer Item A, Civil works in Cost of construction worksheet	115.76	37.7%	14,341	73.11	23.8%	9,058
3	Internal Works	Refer Item B, Civil works in Cost of construction worksheet	45.92	14.9%	5,688	49.59	16.1%	6,144
4	MEP Services	Refer Item C, Civil works in Cost of construction worksheet	82.88	27.0%	10,268	74.35	24.2%	9,211
5	Equipment & Furnishing	Refer Item D, Civil works in Cost of construction worksheet	0.02	0.0%	2	4.61	1.5%	571
6	Landscape & Site Development	Refer Item E, Civil works in Cost of construction worksheet	13.59	4.4%	1,683	19.24	6.3%	2,383
7	Contingency	Amount added to the total estimate for incidental and miscellaneous expenses.	12.91	5.0%	1,599	11.04	5.0%	1,368
	TOTAL HARD COST		273.57	89.8%	33,891	234.44	77.7%	29,044
8	Pre Operative Expenses	Cost of Permits, Licenses, Market research, Advertising etc	15.00	4.9%	1,858	15.00	4.9%	1,858
9	Consultants	Consultant fees on a typical Project	15.00	4.9%	1,858	15.00	4.9%	1,858
10	Interest During Construction	Interest paid on loans related to the project during construction	3.75	1.2%	464	2.21	0.7%	273
	TOTAL SOFT COST		33.75	11.0%	4,181	32.21	10.5%	3,990
	TOTAL PROJECT COST		307.32	100.0%	38,072	266.65	86.8%	33,034

Appendix table 24: Summary of cost estimate

Detailed costing sheet attached separately.

Appendix figure 8 : Construction techniques and materials used **WALL**

Appendix table 25 : System type : wall, System name : AAC wall, Area : 100sq.m - Basecase

Appendix table 26 : System type : wall, System name : Zerund Blocks wall, Area : 100sq.m - Designcase

ROOF

Appendix table 27 : System type : Roof, System name : RCC flat slab, Area : 100sq.m - Basecase

		Mater	ial manufacturing	emissions		Trans	port 1 Ma	nufacturer>	Supplier			Т	ransport 2 Sup	plier> Site		
Material	Unit	Quantity	Emissions Factor	Material Emissions (kg-CO ; e)	Type of Vehicle used	(1) Distance from Factory to Retail shop (km)	(2) No. of	(3) Total distance = (1)* (2) (km)	(4) Total Fuel Consumed = (3)/Mileage (iltres)	Transport Emissions 1 (kg -CO ₂ e)	Type of Vehicle used	(1) Distance from Retail shop to Site (km)	(2) No. of trips	(3) Total distance = (1)* (2) (km)	(4) Total Fuel Consumed = (3)/Mieage (ikres)	Transport Emissions 2 (kg -CO ₂ e)
Bamboo corrugated roof she	kg	912	-0.27	-246	select vehicle>	0	0	0	0	0	Mini truck	148	1	104	5	15
Glass wool (fibreglass)	kg	1280	1.35	1728	<select vehicle=""></select>		0	0	0	0	Mini truck		1	50	3	7
Bamboo poles	kg	700	-0.18	-126	Mini truck	30	1	16	1	2	Mini truck	12	1	6	0	1
			Total material emissions per functional unit (kg -CO 2 e)	14		w. s			Total Transport 1 emissions per functional unit (kg -CO 2 e)	0					Total Transport 2 emissions per functional unit (kg -CO 2 e)	O

Appendix table 28 : System type : Roof, System name : Northlight truss, Area : 100sq.m - Designcase

FLOOR

Material	Unit	Quantity	Emissions Factor	Material Emissions (kg-C0 2 e)	Type of Vehicle used	(1) Distance from Factory to Retail shop (km)	(2) No. of	(3) Total distance = (1)* (2) (km)	(4) Total Fuel Consumed = (3)/Mileage (itres)	Transport Emissions 1 (kg-C0 ; e)	Type of Vehicle used	(1)Distance from Retail shop to Site (km)	(2) No. of trips	(3) Total distance = (1)* (2) (km)	(4) Total Fuel Consumed - (3)/Mieage (R/rs)	Transport Emissions 2 Ag -CO ; el
	kg	10810	0.14	1513	<select vehicle=""></select>	0	0	0	0	0	Mini truck	6	8	50	2	7
Stone floor tile	kg	1945	0.056	109	Mini truck	119	1	178	9	25	Mini truck	6	1	9	ò	1
Ready mix concrete with ordi	kg	32000	0.11	3520	«select vehicle»	0	0	0	0	0	Mini truck	35	25	862	43	122
Steel reinforcement (steel rel	kg	1200	2.6	3120	<select vehicle=""></select>	0	0	0	0	0	Mini truck	11	1	10	1	1
			Total material emissions per functional unit (kg-CO 2 e)	83					Total Transport 1 emissions per functional unit (kg -CO 2 e)						Total Transport 2 emissions per functional unit (kg -C0 ; e)	

Appendix table 29 : System type : Floor, System name : Kota stone, Area : 100sq.m - Basecase

Mat	erial m	anufacturin	g emissions	Transport 1	Manufacture	r> Supplier	r.			Tran	sport 2 Supplier -	-> Site				
Meterial	Unit	Quantity	Emissions Factor	Material Emissions @g-CO; e)	Type of Vehicle used	(1) Distance from Factory to Retail shop glong	(2) No. of	(3) Total distance + (1)* (2) (km)	(4) Total Fuel Consumed • (3)Mileage (litres)	Transport Emissions 1 (kg -CO ; e)	Type of Vehicle used	(1) Distance from Retail shop to Site (km)	(2) No. of trips	City Total distance = (1)* (25 (0%)	(4) Total Fuel Consumed = (3)/Mileage (itres)	Transport Emissions 2 (kg-CO ₂ c)
	kg	23000	0.06	1380	select vehicle>	0	0		0 0		Mini truck	6	18	106	5	15
Steel reinforcement (steel re	kg	800	2.6	2080	select vehicle>	0	0		0		Mini truck	12	1	7	0	1
Clay pots	kg	280	0.24	67	«select vehicle»	0	0		0 0	0	Mini truck	30	0	6	0	1
	5) - Wele		Total material emissions per functional unit (kg-C0 ; e)	35					Total Transport 1 emissions per functional unit (kg-CO ; e)	c			2 (d. 1997)		Total Transport 2 emissions per functional unit (kg -CO 2 e)	0

Appendix table 30 : System type : Floor, System name : Filler slab, Area : 100sq.m - Designcase

FENESTRATION

	Material m	anufacturin	ng emissions	Transport	1 Manufacture	r> Supplier				Tran	sport 2 Supplier	-> Site				
Material	Unit	Quantity	Emissions Factor	Material Emissions (kg-CO ₂ e)	Type of Vehicle used	(1) Distance from Factory to Retail shop (km)	(2) No. of	(3) Total distance = (1)* (2) (km)	(4) Total Fuel Consumed = (3)/Mileage (litres)	Transport Emissions 1 (kg-C0, e)	Type of Vehicle used	(1) Distance from Retail shop to Site (km)	(2) No. of trips	(3) Total distance = (1)* (2) (km)	(4) Total Fuel Consumed = (3) Mileage (litres)	Transport Emissions 2 (/g-CO ₂ e)
Hollock timber	kg	1500	1.8	2700	select vehicle>	1 0	0	0	0	0 0	Mini truck	30	1	35	2	5
Float glass	kg	100	1.2	120	<select vehicle=""></select>	0	0	0	0	0 0	Mini truck	12	0	1	0	0
			Total material emissions per functional unit (kg-CO - e)	G					Total Transport 1 emissions per functional unit (kg-CO ₂ , e)	Q					Total Transport 2 emissions per functional unit (kg-CO - e)	0

Appendix table 31 : System type : Fenestration, System name : Assam Hollock timber, Area : 100sq.m - Basecase

	Material m	anufacturi	ng emissions	Transport	1 Manufacture	> Supplier				Tran	sport 2 Supplier -	-> Site				
Material	Unit	Quantity	Emissions Factor	Material Emissions (kg-CO ₂ e)	Type of Vehicle used	(1) Distance from Factory to Retail shop (km)	(2) No. of	(3) Total distance = (1)* (2) (km)	(4) Total Fuel Consumed = (3)/Mileage (litres)	Transport Emissions 1 (kg-CO ₂ e)	Type of Vehicle used	(1) Distance from Retail shop to Site (km)	(2) No. of trips	(3) Total distance = (1)* (2) (km)	(4) Total Fuel Consumed = (3)/Mileage (litres)	Transport Emissions 2 (Ag -CO 2 e)
Bamboo ply	kg	1800	-0.17	+306	<select vehicle=""></select>	0	0	0	0	0	Mini truck	67	1	93	5	13
Float glass	kg	150	1.2	180	<select vehicle=""></select>	0	0	0	0	0	Mini truck	12	0	1	0	0
			Total material emissions per functional unit	-		Nu. 2	, , , , , , , , , , , , , , , , ,	N	Total Transport 1 emissions per functional unit	0			о) -		Total Transport 2 emissions per functional unit	o

Appendix table 32 : System type : Fenestration, System name : Bambooply, Area : 100sq.m - Designcase

STRUCTURE

		Material manufacturing emissions				Trans	port 1 Ma	nufacturer>	Supplier		Transport 2 Supplier> Site					
Material	Unit	Quantity	Emissions Factor	Material Emissions (kg-CO2 e)	Type of Vehicle used	(1) Distance from Factory to Retail shop (km)	(2) No. of	(3) Total distance = (1)* (2) (km)	(4) Total Fuel Consumed = (3)/Mileage (litres)	Transport Emissions 1 (kg-CO; e)	Type of Vehicle used	(1) Distance from Retail shop to Site (km)	(2) No. of trips	(3) Total distance = (1)* (2) (km)	(4) Total Fuel Consumed = (3)/Mileage (itres)	Transport Emissions 2 (kg -CO ; e)
	kg	459	2.6	1193	<select vehicle=""></select>	0	0	0	0	0	Mini truck	11	0	4	0	1
Cement (ordinary Portland co	kg	6900	0.91	6279	select vehicle>	0	0	0	0	0	Mini truck	6	5	32	2	5
M-sand	kg	5400	0.009	49	<select vehicle=""></select>	0	0	0	0	0	Mini truck	12	4	50	2	7
Aggregate (mixed gravel/crus	cu, m	7.5	0.009	0	<select vehicle=""></select>	0	0	0	0	0	Mini truck	30	0	0	0	0
			Total material emissions per functional unit (kg-CO ₂ e)	75					Total Transport 1 emissions per functional unit (kg-CO > e)	0					Total Transport 2 emissions per functional unit (kg-CO ₂ e)	0

Appendix table 33 : System type : Structure, System name : RCC, Area : 100sq.m - Basecase

	Unit	Material manufacturing emissions			Transport 1 Manufacturer> Supplier						Transport 2 Supplier> Site					
Material		Quantity	Emissions Factor	Material Emissions Ag-CO; e)	Type of Vehicle used	(1) Distance from Factory to Retail shop (km)	(2) No. of	(3) Total distance = (1)* (2) (km)	(4) Total Fuel Consumed = (3)/Mileage (litres)	Transport Emissions 1 (kg-CO ₂ x)	Type of Vehicle used	(1) Distance from Retail shop to Site (km)	(2) No. of trips	(3) Total distance = (1)* (2) (km)	(4) Total Fuel Consumed = (3)/Mileage (litres)	Transport Emissions 2 (kg -CO ; e)
Steel reinforcement (steel rel	kg	455	2.6	1193	<select vehicle=""></select>	0	0	0	0 0	0	Mini truck	12	0	4	0	1
Acc ecomaxx	kg	36098	0.06	2166	<select vehicle=""></select>	0	0	0	0	0	Mini truck	158	28	4387	219	623
			Total material emissions per functional unit	34		16			Total Transport 1 emissions per functional unit	0					Total Transport 2 emissions per functional unit	6

Appendix table 34 : System type : Structure, System name : ACC Ecomaxx, Area : 100sq.m - Designcase

12.13 BUILDING OPERATION NARRATIVE

OPERATIONS-DO's and DON'Ts

SOLAR PANELS

- The panels are cleaned at least once every fifteen days.
- Servicing of HT side equipment on an annual basis
- Diagnosis and tests pertaining to low solar power production
- Use water and a soft sponge or cloth for cleaning.
- lso-propyl alcohol may be used to remove oil or grease stains
- Use detergent or any abrasive material for panel cleaning.
- Spray water on the panel if the panel glass is cracked or the back side is perforated
- Climb on your roof unless experienced trained, and wearing proper personal and fall-protection protective equipment
- Avoid using a high-pressure washer.
- Do not use any metallic objects

LANDSCAPE

too

- Check For Tree Diseases And Pests
- Carry Out Regular Pruning
- Water the plants on regular basis
- Collect drv leaves for
- composting

products

Trees

Allow students to

could cause root

swing on the trees

Over-fertilize.(It

damage)

Flush rubber products or other

Allow rainwater, groundwater

or large volumes of water (such

as those from a swimming

Medicines and any other

non-biodegradable

pool) into the plant

chemicals

Store

Plug

electrical

or outlets

with wet hands

either

down the toilet

Water

much

- Electrical supply to the treatment plant must be maintained constantly
- Service engineer to carry out regular service schedule
- Bleach can be used sparingly

ELECTRICAL SAFETY

• Obey warnings to stay

equipment.

damp surfaces.

the wall

away from electrical

circuits and locked-out

Report and electrical

Use insulating maps on

Locate electrical wires

before drilling a hole in

problems immediately

temporarily or permanently

within 3 feet of any

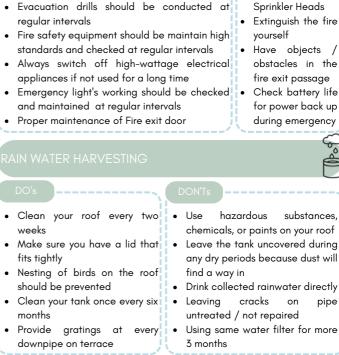
equipment

Overload motors, circuits,

Touch anything electric

electrical equipment.

defective receptacles.


panel

should not be

materials

into

RED OXIDE FLOORING

all

products

Use a soft-bristled broom or a

Use soft materials for wiping

the dirt or stains off the

Scrub a newly coated oxide

floor once a week, but do not

Give time for a cleaning

material to react on one spot

before going through the

use abrasive materials

dust mop to pick up debris.

before

Use

cleaning

cleaners

compound

based.

bleach

Put wax or sealers

Mix various types of

Use cleaners with

crystallization salt

and harmful alkali

Mop with cleaners

that are acid/soap

vinegar solution,

like

for

Test

applying

surface

cleaning.

• Faulty electrical appliances should be

repaired/ replaced immediately.

SAMBOO PRODUCTS

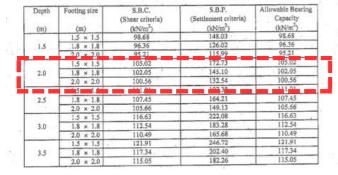
- Clean bamboo on a regular basis.
- Cracks repaired to be immediately.
- Cure bamboo for termites Replacing bamboo if found to
- be weak.
- Applying high impact load on products.
- Applying chemicals or other harmful products on bamboo without prior knowledge.

on Fire Detectors/ Sprinkler Heads Extinguish the fire yourself Have objects

Apply any paint

- for power back up during emergency
- obstacles in the fire exit passage Check battery life

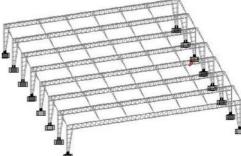
substances,


pipe

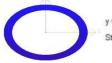
on

SOLAR DECATHLON I GREEN COLLARS

ALLOWABLE BEARING CAPACITY FROM SHEAR CRITERIA AND SETTLEMENT CRITERIA


Appendix table 35 : Table showing allowable bearing capacity.

\cap	
, Fledhi	
Er. Repb Medni BE (Civil) North East Engineer's	
GMC Market, Chandmark Gurahan-3	


Reasons for choosing Isolated footing over Pile footing which the client had proposed:

- Our building design is G+1 floor as compared to G+2 design by the client(More load acting on footing)
- The span of the structure is 6m*5m compared to 7.5m*7.5m for the client's design.
- The pile foundation was not an efficient choice of footing system for the amount of load acting.
- Isolated footing is economical compared to the pile and required less material
- Draining out water from footing is harder in pile compared to the isolated footing.

Appendix figure 9: Tensile stress of a bamboo culm

v = 0.0000 cm, z = 0.0000 cmStress = -275.7654 MPa

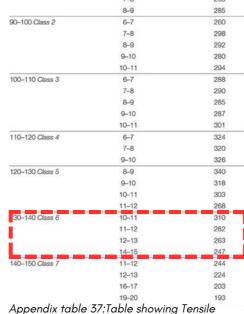
Beam	L/C	Section	Axial MPa	Ben
1272	6	0.333	-275.747	
1272	6	0.417	-275.748	
1272	6	0.500	-275.749	
1272	6	0.583	-275.750	
1272	6	0.667	-275.750	
1272	6	0.750	-275.751	
1272	6	0.833	-275.752	
1272	6	0.917	-275.753	
1272	6	1.000	-275.754	
1658	6	0.000	-275.765	
1658	6	0.083	-275.766	
1658	6	0.167	-275.767	
1658	6	0.250	-275.768	
1658	6	0.333	-275.769	
1658	6	0.417	-275.769	
1658	6	0.500	-275.770	
1658	6	0.583	-275.771	
1658	6	0.667	-275.772	
1658	6	0.750	-275.772	
1658	6	0.833	-275.773	
1658	6	0.917	-275.774	
1658	6	1.000	-275.775	

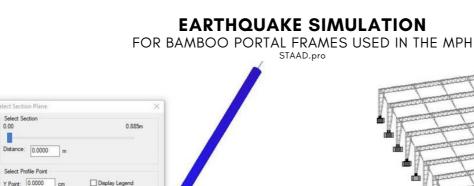
Appendix table 36 : Beam Stress

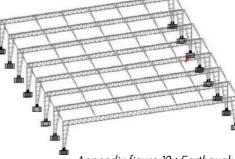
Tensile strength of bamboo for various culm diameters and wall thicknesses

STAAD.pro

Culm diameter (mm)	Wall thickness (mm)	Tensile strer (MPa)
80-90 Class 1	6-7	281
	7-8	295
	8-9	285
90–100 Class 2	6-7	260
	7-8	298
	8-9	292
	9-10	280
	10-11	294
100-110 Class 3	6-7	288
	7-8	290
	8-9	285
	9-10	287
	10-11	301
110-120 Class 4	6–7	324
	7-8	320
	9-10	326
120-130 Class 5	8-9	340
	9–10	318
	10-11	303
	11-12	268
30-140 Class 6	10-11	310
	11-12	282
	12-13	263
	14-15	247
140-150 Class 7	11-12	244
	12-13	224
	16-17	203
	19-20	193


Appendix figure 10 : Earthquake Structure modelling in Rhino




The maximum tensile stress in the MPH structure as per the analysis is 275 MPa (or N/mm2), under earthquake conditions of Zone V, with an increased load factor of 1.5x

— As the per source mentioned, bamboo (Class 6, 140mm dia, 10mm wall thickness) can bear upto 310 MPa

Hence, Class 6, 140mm dia bamboo proves to be earthquake resistant Source : Mechanical properties of bamboo-research paper https://www.frontiersin.org/articles/10.3389/fmats.2019.00015/full through simulations

12.15 CLIMATE ANALYSIS

PARAMETERS	NAGAON, ASSAM
Koppen Climate Zone	Warm and Humid
Temperature	Dry winter , hot summer
	Annual mean = 23 °C Mean lowest = 16 °C (January) Mean highest = 28 °C (June)
Average Annual Relative Humidity	80.6 %
Wind Speed	Mean highest =4 m/s Mean lowest = 0 m/s
Rainfall	Highest = 570 mm (July) Lowest = 15 mm (December)

Appendix table 37 :Climate of Nagaon Source : Climate consultant and climate-data.org

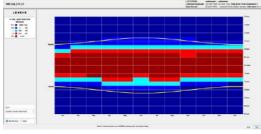
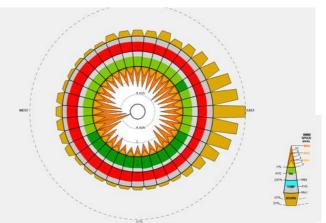



Figure 12 : Comfort graph for Nagaon Source: Climate Consultant

Figure 13 : Radiation range for Nagaon Source: Climate Consultant

INDICATORS	Jan	Feb	March	Apri	May	June	July	Aug	Sept	Oct	Nov	Dec
HUMID: H1		*	*	*	*					*	*	*
H2							*	*				
H3					*	*	*	*	*			
ARID: A1	*											
A2												
A3												

Appendix Figure 11: Wind wheel

Inferences,

Mahoney's table 7 showing mean maximum mean minimum temperatures, temperature range, rainfall and of every month. Cooling and dehumidification for > 24°C summers and heating and humidification during winters. < 20 °C

Only dehumidification is needed in the comfort zone.

Eliminating air	Building design minimizes overheating.
conditioning	Window overhangs and verandas
Minimizing	Minimizing the west facing glazing.
summer heat gain	High performance glazing on all orientations.(1500+ hours of internal he gain required during winters.)
	Fan forced or indoor air motion can mak seem cooler by 5 degrees or more thus I air conditioning is needed.
Passive ways to ventilate the	Heat pumps can be an cost effective way dehumidifying for 1000+ hours
spaces	Long narrow building floor plan can help maximize cross ventilation.
	Locating doors and windows on a larger openings facing wind-up.

Figure 14 : showing some adaptive strategies using the psychometric chart and common strategies from the Mahoney's table.

Category	Number	Design guidelines
Layout	1	Orintation north and south (long axis east - west)
	2	Compact courtyard planning
Spacing	4	Open spacing for breeze penetration , but protection
Air Movement	6	Rooms single banked, permanent provision for air movement
Openings	9	Large openings, 40%-80%
Wall	12	Light walls, short time-lag
Rain Protection	17	Protection from heavy rainfall necessary
Size of opening	1	Large 40%-80%
Position of openings	6	In north and south walls at body height on windward side
Protection of openings	8	Exclude direct sunlight
	9	Provide protection from rain
Walls and floors	10	Light low thermal capacity
Roofs	12	Light, reflective surface cavity
External features	16	Adequate rainwater drainage

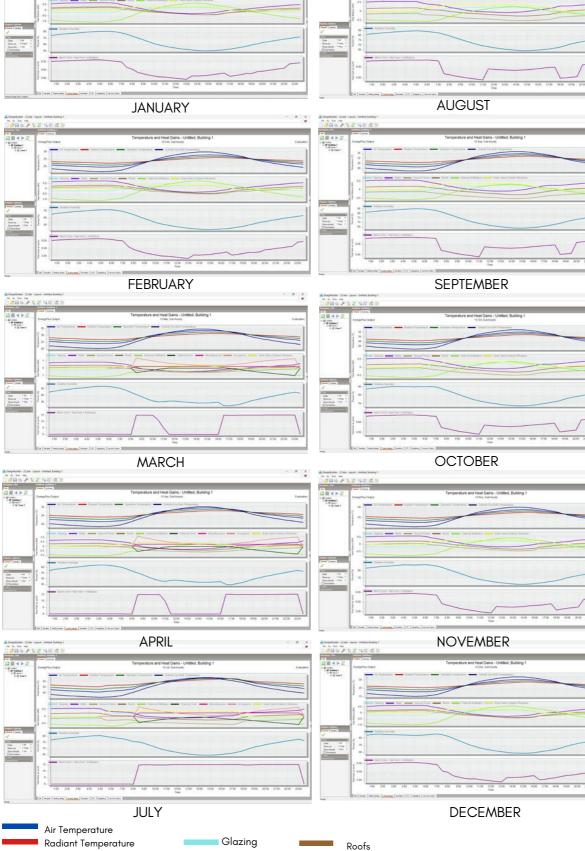
Wind speed maximum February, March, April and September.

Maximum number of hours is from E, NE and SE

> sky cover seen is 90% percent and annual mean is 45%.

Appendix table 38 : Passive Strategies , Source: Climate consultant

Walls


Ground Floors

Operative Temperature

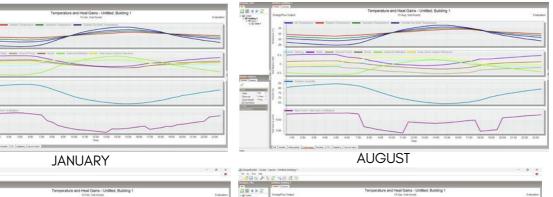
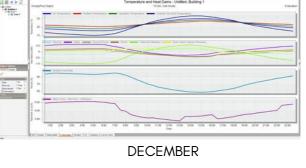

Outside Dry Bulb Temperature

Figure 15: Health and well being calculations

-



12.16 HEALTH AND WELL-BEING CALCULATIONS

and a state of

External Infilteration

Solar Gains Exterior Windows

Relative Humidity

Mech Vent + Nat vent + Infiltration

Space type	No. of occupant	R _p (l/s.person)	Floor Area (m ²)	$R_a (l/s.m^2)$	Ventilation rate (I/s)
preschool	30	5	60	0.6	186
junior	40	5	50	0.6	230
middle	40	5	60	0.6	236
high	40	5	60	0.6	236
staff room	12	2.5	30	0.3	39
canteen	480	3.8	100	0.9	1914
canteen - high	250	3.8	50	0.9	995
physics	25	5	70	0.9	188
chem	25	5	70	0.9	188
bio	25	5	70	0.9	188
comp	25	5	70	0.6	167
art room	40	5	70	0.9	263
activity room	40	5	60	0.9	254
library	2000	3.8	300	0.3	7690
hod	2	2.5	15	0.3	9.5
admin	50	2.5	60	0.3	143
mph	1000	3.8	800	0.3	4040
kitchen	10	3.8	30	0.6	56
seminar	400	3.8	200	0.3	1580
r&d	25	5	150	0.6	215

Ventilation rates for each space

Appendix table 39 : Passive Strategies , Source: Climate consultant

Air Changes

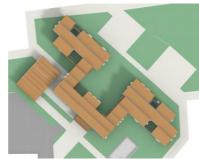
ACH = 60Q/V Q = 0.3AV V = 0.6m/s (average)

A = 4 x 2.1 x 3/4 = 6.3 sqm Q = 0.3 x 6.3 x 0.6 = 1.134 cu m/s VOLUME = 6 x 10 x 3.9 = 234 cu m

ACH = (60 x Q x 60)/V = (60 x 1.134 x 60)/234 = 0.2907 air changes per minute = 17.446 air changes per hour

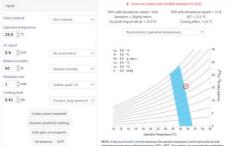
 $Qmax = 0.3 \times 6.3 \times 1 = 1.89 cu m/s$


Therefore, ACHmax = (3600 x Qmax)/V = (3600 x 1.89)/234


= 0.485 air changes per minute

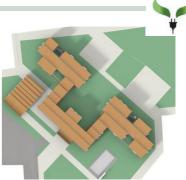
= 29.07 air changes per hour

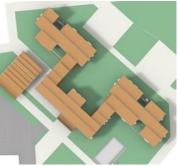
SPACES	AIR EXCHANGES PER HOUR (AS PER NBC)	AREA OF ROOM	WINDOW	VELOCITY OF WIND	A	Q	VOLUME OF ROOM	ACH ACHIEVED (PER HOUR)	ACH ACHIEVED (ROUND-OFF)
LABORATORIES	6 TO 15	70	8	0.6	6	1.08	273	14.24175824	14
LIBRARY	3 TO 5	300	12.6	0.6	9.45	1.701	1170	5.233846154	5
OFFICES	6 TO 20	15	2.52	0.6	1.89	0.3402	58.5	20.93538462	20
CLASSROOMS	5 TO 7	60	8.4	0.6	6.3	1.134	234	17.44615385	17
TOILETS	6 TO 10	52.5	2.4	0.6	2.4	0.432	204.75	7.595604396	7
CANTEEN	8 TO 12	100	14.7	0.3	11.025	0.99225	390	9.159230769	9


Appendix table 40 : Air changes per hour achieved

Appendix figure 16 : January - 9 am

CBE Thermal Comfort Tool


Appendix figure 20: graphs showing operative temperature and humidity ratio using thermal comfort tool



Appendix figure 18 : April- 9 am

Thermal comfort analysis

Appendix figure 17 : January - 3 pm

Appendix figure 19: April- 3 pm

Operative temperature with 90% acceptability for naturally ventilated buildings as per IMAC
According to the adaptive thermal comfort model for
air-conditioned areas as per NBC,
Indoor Operative Temperature
= (0.078*Outdoor Temperature) + 23.25
=(0.078*28) + 23.25
=25.434 degrees Celsius
According to the adaptive thermal comfort model for
the naturally ventilated area as per NBC,
Indoor Operative Temperature
= (0.54*28) + 12.83
= 27.95 degrees Celsius
Considering the 90% acceptability, the range for
India = +- 2.5 degree Celsius

12.17 ADDITIONAL CALCULATIONS

Impulse turbine calculations

Annual amount of water collected: 11135 cubic meters Average Amount of water available per day = 11135/365 = 30.51 cubic meters Since there are 2 turbines on site, with each having 3 inlet nozzles, the amount of water available to each nozzle = 30.51/6 = 5.085 cubic meters. Cross-sectional area of the inlet pipe, A= 0.0095 sqm Inlet fluid velocity, V= 5m/s Cross-sectional area of nozzle: 0.0018 sqm Nozzle fluid velocity: 26.4m/s Discharge, Q = A*V = 0.0095 * 5 = 0.0475 cubic meters per second Time taken for discharge of cubic meters of water, t = 5.085/Q = 0.0297 hours Impact on turbine blade, F = (Fluid density)(Cross-sectional area of jet)((Fluid velocity)^2) = 1000*0.0018*(26.4^2) = 1254.53N Torque, T= (Force)*(Turbine radius) = 1254.53 * 0.3 = 376.36Nm Angular velocity, w = (Torque)/(Moment of Inertia) i)For steel turbine, Moment of Inertia, I = 1.06 kg*sqm Thus, w = 376.36/1.06 = 355.056 rad/s Energy, E = T*w*t = 376.36 * 355.056 * 0.0297 = 3.968 kWh per day on average.

ii)For glass fibre turbine, Moment of Inertia, I = 0.33 kg*sqm

Thus, w = 376.36/0.33 = 1140.485 rad/s

Energy, E = T*w*t = 376.36 * 1140.485 * 0.0297 = 12.75kWh per day on average.

We observe that the glass fibre turbine produces more energy and is thus is more suitable for our purposes.

Swing and Merry-Go-Round Calculations:

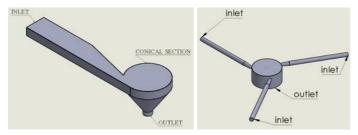
1. Considering that the extreme positions of the swing (-30deg and 30deg) subtend a total of 60deg angle at the shaft,

Total Power Generated, P = (Voltage)*(Current) = 2* (2V) * (0.3A) = 1.2 W

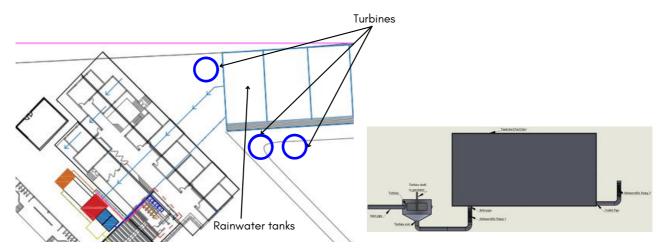
Total Energy required to recharge a battery, P' = (Voltage) * (Capacity)= (1.5V) * (900mAh)= 1.35 WhThus, Time required to recharge a single battery, t = (P')/(P)= (1.35)/(1.2)= 1.125 hours

Considering a total of 4 swings operating simultaneously, the time required becomes 0.28 hours or 16.8 minutes.

2. Consider a 5kg merry-go-round of diameter off or 1.83m which rotates at a uniform speed of 100rpm and is connected to a dynamo. Assuming that 4 children each of 10kg are riding the apparatus, the total weight becomes 45kg.


Torque on shaft, T = (Weight) * (Radius) = (45kg * 9.81) * (1.83/2) = 403.93 Nm Power generated, P = (RPM) * (Torque) / (9.55e+6) = (100) * (403.93) / (9.55e+6) = 4.25 mW Time required to charge one battery = (P')/(P) = (1.35)/(0.00425) = 317.65 hours

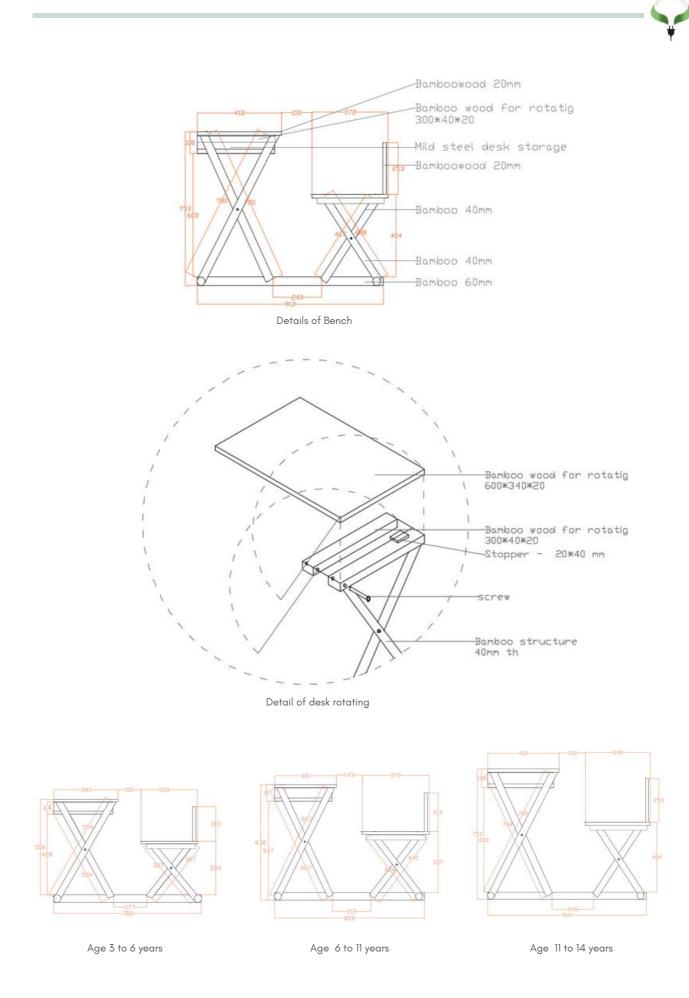
Due to a large amount of time required, charging batteries is not feasible. Thus, it is proposed that small LED bulbs light up when rotated, appealing to the children's curiosity and fascination while encouraging physical activity.


PARAMETER	WATER VORTEX	IMPULSE TURBINE
Diameter	0.5m	0.8m
Depth	0.4m	0.41m
Shaft diameter	50mm	50mm
Turbine diameter	150mm	600mm
Turbine height	0.2m	0.2m
Number of blades	4 (helical)	6 (straight)
Blade thickness	5mm	20mm
Flow rate required	High	Low
Head required	Low	Medium - High
Speed	200rpm (low speed)	1300 rpm (high speed)
Energy generated	3.968 kWh	12.75 kWh
Material used for the turbine	Stainless Steel	Glass fibre
Total capital expenditure on turbine	Rs. 1,13,000 approx	Rs 29,000 approx (lighter)
Generator Cost	Rs. 40,000	Rs. 58,000
Maintenance Cost	Rs. 86,000 per year (turbine)Rs. 20,000 per month (generator)	No maintenance required for the turbine.Rs. 20,000 per month (generator)

Comparison between Water Vortex and Impulse Turbine

Appendix Table 41: Comparison between Water vortex and Impulse turbine

Appendix figure 21: Water vortex(left) and Impulse turbine(right)


Appendix figure 22: Integration of Impulse turbine with the rainwater harvesting tank and building

Sl. No.	Particulars	Cost per Unit	Number of units	Total CapEx (INR)	Maintenance Cost (INR)	Lifetime of product (years)	Power Rating	Total Consumption for 8 hours
1	LED Display Screens	3800 / sqft	15 sqm (3 units)	615600	10000 (only when pixel is damaged)	3	600W	4.8kWhr
2	Touch-enabled Smart Board	70000-100000	2	140000-2000 00	10000 (only when pixel is damaged)	3	150W	1.2kWhr
3	Tablets (AR)	8000-15000	8	64000-12000 0	-	3	20W	0.16kWhr
4	VR Goggles	50000	8	400000	10000-25000 depending on extent of damage	3	-	14Whr
5	Robotics Kits	Depends on curriculum	30		-	Indefinite	Battery operated	-
6	3D glasses	100	30	3000		1	-	- -
7	Headphones	5000	30	150000	-	1		-

Appendix table 42 : Provision for the future

Furniture design calculations

Material used - MS cold rolled tube (3mm) For one bench 28kgs of MS square tubes is used. total tube MS used = 28kg * 60rs/kg = 1680 Total MS sheets for joinery = 60 Rs total cost with nuts and bolts and labor charges = 1680+60+200+60=2000/unit **Bamboo panels calculations** Height of the panel = 1800mm Width of the panel = 600mm total length and width = 1800 and 1800 respectively Material used = Solid bamboo poles of 20mm and 40mm diameter, bamboo mats (22rs/sqft), magnetic sheets (300*300*2mm - 30rs /sheet) No. of 40 mm diameter poles used = 2 cost = 110/piece No. of 20mm diameter poles used = 8 cost = 25rs/piece Bamboo mats and magnetic sheets used = 792rs + 240 Rs Total = 792+240+400 =1432 Stiches and glue used= 5% Total = 1460 Rs/ panel **Movable acoustic Partition walls** Aluminum top channel = 125 Rs/feet , aluminum side caps and U-clamp = 125+125=250, saw dust 8rs/kg Required length per classroom = 4m Width of panel = 600mm Length of panel =2100mm Rice husk required for 1 panel = 2.16 kgs Cost of rice husk = 8 Rs/kg, total = 17.25 Rs. Resin required (255/kg) = 0.5kg per panel = 127 Rs bamboo mats = 308/panel, EPDM rubber seal 60rs Total =125+125+125+308+308+17.28+17.28+125+60+60+60+16+16= 1362.56 Rs Labour charges = 30% = 1362+400 = approx 1800 Rs/panel Installation cost = Total panel cost + Frame 20% =12600 + 20%= approx 16,000 Rs

12.19 GRIHA CRITERIA

Criterion 1: Site Selection

• 1.1.2: The project site is a brownfield site OR a redevelopment project OR there are at least 5 services (from the list given below) within the campus or within 500m walking distance from main entrance of project – **1 point**

Criterion 2: Low-impact design

• 2.1.1: Demonstrate reduction in environmental impact through design by adoption of various passive design and low-impactsite planning strategies - **4 points**

Criterion 3: Design to mitigate UHIE

3.1.2: More than 50% of the site surfaces visible to sky (including building roofs but not the landscape area*) are either soft paved/covered with high SRI coating (SRI > 0.5)/shaded by trees/shaded by vegetated pergolas/shaded by solar panels or any combination of these strategies - 2 points

Criterion 5: Air and water pollution control

• Provision of 3 meter high barricading around the construction area - Mandatory

- Wheel washing facility at the vehicular entrance of the site
- Covering of fine aggregate and excavated earth on site with plastic/geotextile sheets
- Water sprinkling on fine aggregate (sand) and excavated earth
- All diesel gensets on site to have proper chimneys with their outlet facing away from the site
- 5.1.2: Develop and implement a spill prevention plan (to control effects of spill from hazardous

materials like bitumen, diesel etc.) on site - 1 point

Criterion 6: Preserve and protect landscape during construction

- 6.1.2: Increase total number of trees on site by 25% above the pre-construction phase OR Plant 4 trees for every 1 tree cut of the same native/naturalized species **2 points**
- 6.1.3: Preserve top soil during construction, maintain its fertility (during construction phase) and use for landscape post-construction **2 points**

Criterion 7: Construction Management Practices

- 7.1.1: Adopt staging during construction on site 1 point
- 7.1.2: Adopt strategies to prevent/reduce movement of soil (not top soil) outside the site through adoption of various strategies(like soil erosion channels, sedimentation control etc.) **1 point**
- 7.1.3: Adopt strategies (at least 3 from the list below) to manage water during construction **1 point**
- Using gunny bags for curing and using ponding for curing
- Monitoring to avoid leaks and water wastage
- Use of additives to reduce water requirements during curing
- Use of treated waste water/captured storm water

• 7.1.4: A construction waste management plan for segregation of construction waste, its safe storage and on-site/off-site recycling is developed and implemented in the project – **1 point**

Criterion 8: Energy efficiency

- 8.1.2: Peak heat gain through building envelope (for each AC building individually) should meet the GRIHA Building Envelope Peak Heat Gain Factor thresholds **2 points**
- 8.1.3: Demonstrate that 100% of outdoor lighting fixtures (lamps + lamp housing) meet the luminous efficacy requirements of GRIHA 1 point (All lamps + lamp housing must demonstrate luminous efficacy of at least 75 lumens/watt.)
- 8.1.5: Additional reduction in EPI will be awarded points as mentioned below: 50% reduction 10 points

Criterion 9: Renewable energy utilization

• 9.1.1: On-site/Off-site renewable energy system installation to offset a part of the annual energy consumption of internal artificial lighting and HVAC systems. 25% - **7 points**

Criterion 11: Achieving indoor comfort requirements(visual/thermal/acoustic)

• Demonstrate that the mean DA requirements (300* lux or more) are met over the total living area for at least 75% of total annual analyse hours (area-weighted) – **4 points**

Criterion 12: Maintaining good IAQ

• 12.1.1: Meet the minimum requirements of a NBC-2005 for quantity of fresh air - 2 points

12.1.2: Monitoring the CO2 temperature and RH at the occupied spaces or at AHUs for the airconditioned spaces – 2 points

Criterion 13: Use of low-VOC paints and other compounds in building interiors

- 13.1.1: Ensure that all interior paints are low-VOC *(as mentioned in the GRIHA manual) and leadfree - 1 point
- 13.1.2: Ensure that all adhesives and sealants used shall be low-VOC *& that interior composite woodproducts do not use urea-formaldehyde as a bonding resin **1 point**

Criterion 14: Use of low-flow fixtures and systems

• 14.1.2: Reduce water demand through selection of low-flow fixtures by 50% below the GRIHA base case – **2 points**

Criterion 15: Reducing landscape water demand

• 15.1.3: Reduce landscape water demand by at least 50% from the GRIHA base case - 4 points

Criterion 16: Water Quality

• 16.1.2: The STP installed on site meets the CPCB norms - 2 points

Criterion 17: On-site water reuse

• 17.1.1: Demonstrate that the project meets the on-site water reuse requirements (through on-site recycle and reuse of waste water and use of on-site harvested rainwater) in its annual water requirements for domestic use, buildings, landscape and utilities as mentioned below: 80% - **5 points**

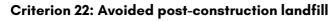
Criterion 19: Utilization of BIS recommended waste material in building structure

19.1.1 Minimum 15% replacement of Ordinary Portland cement with fly ash* by weight of cement used in structural concrete – **1 point**

• If replacement is more than 25% - 2 points

• 19.1.2 Minimum 40% composition of building blocks/bricks by fly ash* by volume, for 100% load bearing and non-load bearing masonry walls – **2 points**

• 19.1.3 Certify minimum 15% replacement of Ordinary Portland cement with fly ash* in plaster/masonry mortar – 1 point


• If replacement is more than 25% - 2 points

Criterion 20: Reduction in embodied energy of building structure

 20.1.3: Demonstrate reduction in combined embodied energy of load-bearing structure and masonry walls by at least 30% below the base case – 4 points

Criterion 21: Use of low-environmental impact materials in building interiors

• 21.1.1: Project demonstrates that at least 25% of all materials (calculated by surface area) used for building interiors* meets the GRIHA criterion low-impact material requirements – 1 point

- 22.1.1: Provide infrastructure (multi-coloured dustbins/different garbage chutes) to building occupants
- to ensure segregation of waste at source
- 22.1.2: Provide dedicated, segregated and hygienic storage spaces in the project site to store different
- wastes before treatment /recycling
- 22.1.3: Provide contractual tie-ups with waste recyclers for safe recycling for recyclable wastes like
- metal, paper, plastic, glass etc.
- Together 4 points

Criterion 23: Treat organic waste on site

• 23.1.1 Implement strategies to treat all organic (kitchen and landscape) waste on-site and to convert it into a resource (manure, biogas etc.) - **2 points**

Criterion 25: Design for Universal Accessibility

• 25.1.1: Compliance with National Building Code norms on Requirements for Planning of Public Buildings Meant for Use of Physically Challenged - **2 points**

Criterion 26: Dedicated facilities for service staff

• 26.1.1: Provide dedicated resting roomsfor the service staff on site - 1 point

Criterion 27: Increase in environmental awareness

• 27.1.1: Adopt measures to create environmental awareness - 1 point

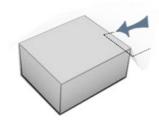
Criterion 31: Innovation

• Net-Zero Energy/Water - 1 point

TOTAL POINTS - 81 Our building achieves a **GRIHA 4** - **Star** Rating

12.20 LIST OF INPUT AND OUTPUT PARAMETERS

Input Parameters	Units	Proposed Design Values
General		
Building Area	m²	8072
Conditioned Area	m²	1210
Electricity Rate	INR/kWh	8.02
Natural Gas Rate	INR/GJ	NA
Building Occupancy Hours	-	8 am to 5 pm
Average Occupant Density	m ² / person	4.036
Internal Loads		
Interior Average Lighting Power Density	W/m ²	ТВА
List of Lighting Controls		-
Average Equipment Power Density	W/m ²	ТВА
Minimum OA Ventilation (Building Average)	m/s	0.6
Envelope		
Roof Assembly U value	W/m².K	0.28
Roof Assembly SRI		ТВА
Average Wall Assembly U value	W/m².K	0.28
Window to Wall Area Ratio (WWR)	%	N(40), S(20), E(10), W(8) - 19.5%
Windows U value	W/m².K	1.4
Windows SHGC		0.47
Windows VLT	%	59%
Infiltration Rate	ac/h	ТВА
Describe Exterior Shading Devices		Refer pg 15
HVAC System		
HVAC System Type and Description	-	VRV+DOAS System (pg 30)
Describe Mixed mode strategy in operation/controls of AC and windows		Refer pg 41
Heating Source	-	NA
Heating Capacity	kW	NA
Heating COP		NA
Cooling Source	-	VRV System
Cooling Capacity	kW	ТВА
Cooling COP		3.67
Operation Hours		11 hrs/day
Heating Set Point	°C	NA
Cooling Set Point	°C	27.4
Relative Humidity Setpoint		NA
Service Hot Water		
SHW Type and Description	-	Heat Pump (Refer pg 26)


Output Parameters	Units	Proposed Design Value	es	
Proposed EUI (Total)	kWh/m²/ yr	26.5		
EUI Breakdown by End Use				
Heating	kWh/m²/ yr	NA		
Cooling	kWh/m²/ yr	1.38		
Fans	kWh/m²/ yr	0.94		
Pumps	kWh/m²/ yr	0.75		
Heat Rejection	kWh/m²/ yr	NA		
Service Hot Water	kWh/m²/ yr	0.24		
Lighting	kWh/m²/ yr	0.34	0.34	
Equipment	kWh/m²/ yr	2.55		
Total Envelope Heat Gain (Peak)	W/m²	ТВА		
Cooling Load of Conditioned Area	SF/ Tr	302.88		
Building Electric (Peak)	W/m ²	ТВА		
Annual Operating Energy	INR/m ²	Rs 446/m2 (this value does not apply to ou		
Cost		case as we are not buying any energy)		
Annual Unmet Hours	-	Daylight - 547/2187, Wind - 0/2187		
Cooling Capacity	Tr	42.93		
Annual Hours of Comfort		2187/2187 hours for 84% (6860 m2) of the		
without Air Conditioning		building		
Monthly Energy Performance		Generation	Consumption	
Jan	kWh	18290	20015	
Feb	kWh	21033	18981	
Mar	kWh	21948 22698		
Apr	kWh	21948	18611	
Мау	kWh	21948 17362		
Jun	kWh	3658	16050	
Jul	kWh	19204	16401	
Aug	kWh	21033	16623	
Sep	kWh	21948	17178	
Oct	kWh	13717	20247	
Nov	kWh	20119	20176	
Dec	kWh	17375	18147	

Appendix table : Input and output parameters

V

12.21 DESIGN PROCESS


Building block oriented 30 deg. to wind direction for effective natural ventilation

Channelizing wind through built masses (wind funneling for greater velocity)

Intermediate breakout spaces for better learning experience and interaction amongst students

A combination of breakout space sand wind funneling for better user experience

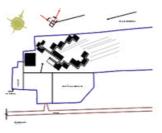
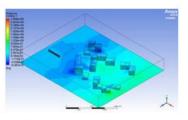



Figure 11a:Initial Iteration 1

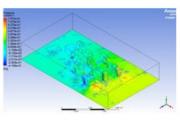
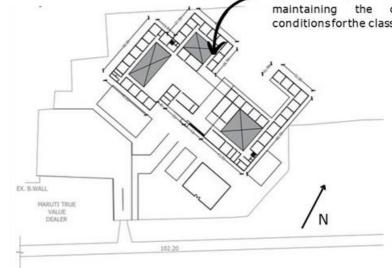
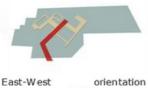


Figure 11b:Initial Iteration 2

12.1 ITERATION1



Buildingsare at a 30 degree inclination to the wind direction


Buildingsare parallel to the wind direction

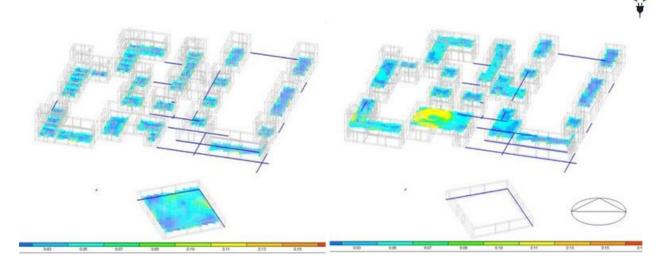
Courtyards help in cross ventilation and help in maintaining the comfort conditionsforthe classrooms

TO GUWAHATI

Figure 12.1a:Plan - Iteration 1

increases ventilation and day

lightaccess



Creating courtyard & interactive spaces between spaces

Classrooms are placed on the periphery around the courtyard, services and admin (mechanically ventilated) are in the wind shadow region

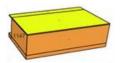
Appendix figure : Design process

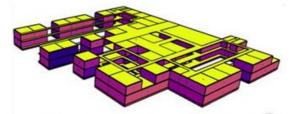
Appendix figure : Process simulation

The following below images shows the solar radiation from the surface of building through out the year. Surface include roof, walls and floor slabs. Software used for this particular simulation was CLIMATE STUDIO (1.8.8244.25334)

•Material chosen for this particular simulation are-Bamboo for walls, Concrete for floors, plinth and roof.

•On an average solar radiation was observed to be around 659 kWh/m2- Year, March and May had the highest values compared to other months.




Fig c:Block model with vertical shading. Solar radiation values are : South:1113kWh/m2 East: 1084 kWh/m2

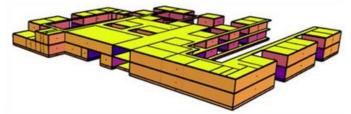
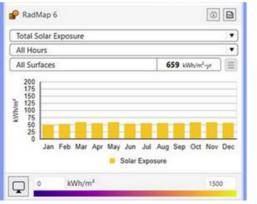

Fig b: Block model with horizontal shading. Solar radiation values are: South:1090 kWh/m2 East: 1124 kW h/m2

Fig d: Block model with combination of horizontal and vertical shading. Solar radiation values are: South: 1121kWh/m2 East: 1129 kW h/m2


. On simulating a block model, with multiple shading devices(Louvres-Horizontal, vertical and combination of both) for solar radiation, optimum passive strategy was to provide horizontal shading device for south façade(as shown in fig b) and vertical shading device for east façade(as shown in fig c).

- - North and West façade has low solar radiation varying from 550 to 780 kWh/m2-Year

 South and east facing surfaces had maximum radiation ranging from 1000-1190 kWh/m2- Year, provision of corridors and shading devices reduced the values to as low as 300 to 400 kWh/m2-Year.

Appendix figure : Process simulation 2

13. LETTERS OF CONFIRMATION

13.1 PROJECT PARTNER LETTER

Antaraa Tower, Danish Road, Pan Bazar, Guwahati-781001 (Assam) Phone No - 0361 - 2632883 Fax - 0361- 2603454

Date : 08.09.2022

To, The Director Solar Decathlon India

Dear Sir,

This is to inform you that our organization GYANDEEP FOUNDATION, Guwahati, (Assam) has provided information about our DPS Nagaon, Deodhar, Nagaon, (Assam) project to the participating team led by RV college of Architecture, so that their team GREEN COLLARS may use this information for their Solar Decathlon India 2022-23 Challenge entry.

As a Project Partner to this team for the Solar Decathlon India 2022-23 competition, we are interested in seeing the Net-Zero-Energy, Net-Zero-Water, resilient and affordable solution this student team proposes and the innovation that results from this. We intend to have a representative from our organization attend the Design Challenge Finals event in April, if this team is selected for the finals.

We would like our organization's logo to be displayed on the Solar Decathlon India website, recognizing us as one of the Project Partners for the 2022-23 Challenge.

With warm regards,

Name of Representative: ASHWINI CHHAWCHHARIA

Designation: Vice -President Email: ashwini@karnak.in

Phone: 70026 04939

13.2 INDUSTRY PARTNER LETTER

ZERUND MANUFACTURING PVT. LTD. HOUSE NO. 10, SEWALI PATH, HATIGAON, GUWAHATI 38, ASSAM GSTIN:18AABCZ2574J1ZX

Date :- 16- 02-23

To, The Director, Solar Decathlon India.

Dear Sir,

This is to inform you that our organisation, Zerund Manufacturing Pvt. Ltd., is collaborating with the participating team led by RV College of Architecture on an Educational Building project for their Solar Decathlon India 2022-23 competition entry.

The nature of our collaboration will be assisting the team to achieve their goal of a Net Zero Energy building, by advising them on existing strategies and practices that can be used for the same, as well as guiding them to innovate and devise new strategies that better suit their building.

We would like to have a representative from our organisation to attend the Design Challenge Finals event in April/May, if this team is selected for the Finals.

We would like our organisation's logo to be displayed on the Solar Decathlon India website, recognising us as one of the Industry Partners for the 2022-23 competition.

With warm regards,

Name:- Mousum Talukdar Designation :- Director Name of the Organisation:- Zerund Manufacturing Pvt. Ltd. Email:- mousum.talukdar@zerund.com Phone:- 7002231943

Zerund Manufacturing Pvt. Ltd.

Mellin Talikdar Authorized Signatory

13.2 INDUSTRY PARTNER LETTER

CENTRE FOR GREEN BUILDING MATERIALS & TECHNOLOGY

7. Aditigreenscapes, No.20, Venkateshpura, Srirampura, Sampigehalli Road Bangalore - 560 064, Karnataka, India. Tel.: +91 80 22792658, 22712426, cgbmtblr@gmail.com www.cgbmt.net

Ref .:

Date: 15.04.2023

To, The Director, Solar Decathlon India.

Dear Sir.

This is to inform you that our organization. Centre for Green Building Material and Technology is collaborating with the participating team led by RV College of Architecture on an Educational Building project for their Solar Decathlon India 2022-23 competition entry.

The nature of our collaboration will be assisting the team to achieve their goal of a Net Zero Energy building, by advising them on existing strategies and practices that can be used for the same, as well as guiding them to innovate and devise new strategies that better suit their building.

We would like to have a representative from our organization attend the Design Challenge Finals event in April/May, if this team is selected for the Finals.

We would like our organization's logo to be displayed on the Solar Decathlon India website, recognizing us as one of the Industry Partners for the 2022-23 competition.

With warm regards.

Ar. Neelam Manjunath CEO, Founder and Managing Trustee, Centre for Green Building Materials and Technology, Bangalore.

13.3 LETTERS FROM INSTITUTIONS

Date: 21-02-2023

BONAFIDE CERTIFICATE

This is to certify that the bearers of this letter are bonafide students of R.V.College of Architecture (RVCA), Bengaluru currently studying in VI & VIII Semester B. Architecture course.

The B. Architecture course is of 5 Years duration affiliated to Visvesvaraya Technological University, Belagavi.

This certificate is issued only for the purpose to take part in "Solar Decathlon Competition", on request of the <u>Green Collars Team</u>.

Sa Dar

Dr. O P Bawane Principal PRINCIPAL R V COLLEGE OF ARCHITECTURE BENGALURU - 560 109. List of the Students:

- 1. Ms. Sanya Gupta 1RW19AT091
- 2. Ms. Priyesha Anantharamakrishnan 1RW19AT073
- 3. Ms. Polimera Srinidhi 1RW19AT067
- 4. Ms. Anisha Dara 1RW19AT013
- 5. Mr. Jatin E. 1RW19AT047
- 6. Ms. Saakshi Patil 1RW19AT081
- 7. Ms. Shivani Goud 1RW19AT096
- 8. Mr. Madan Shekhar 1RW19AT055
- 9. Mr. Pratham Rathi 1RW20AT073
- 10.Ms. Navya U B 1RW20AT059
- 11.Ms. Manasa Rao 1RW20AT52
- 12.Mr. Aniruddh Bajpai 1RW20AT011

+91-97422 75212

Site CA-1, Banashankari 6th Stage, 4th Block Near Chikagowdanapalya Village, Off, Vajarahalli Main Road, Bengaluru - 560109, Karababa Iadia

rvca@rvei.edu.ir www.rvca.edu.in Go, change the world

13.3 LETTERS FROM INSTITUTIONS

RV Vidyaniketan, 8th Mile, Mysuru Road, Bengaluru, 560059, India Ph : +91 80 68199900 | www.rvu.edu.in

Date: 21.02.2023

BONAFIDE CERTIFICATE

This is to certify that Ms. Dhatri N K, D/o Mr. Nandakishore K is a bonafide student at RV University. She has been admitted in academic year 2021-22 for Bachelor of Design (B.Des) in the School of Design & Innovation. Presently, She is pursuing her 2^{nd} year IV Semester in Spatial and Interior Design Specialisation 4-year undergraduate programme (B.Des).

This Certificate is issued at the request of the Green Collars Team for the purpose of participating in the Solar Decathlon India Competition.

Univ Jum

Vinay Mundada Dean – School of Design & Innovation

RV College of Engineering"

Autonomous Institution Affiliated to Visvesveraya Technological University, Belagavi Approved by AICTE, New Delhi, Accredited by NAAC, Bengaluru

TO WHOMSOEVER IT MAY CONCERN

This is to certify that the below-mentioned students are bonafide students of R V College of Engineering and currently studying in V Sem B. E.

Bachelor of Engineering is a 4 Year duration course, and R V College of Engineering is affiliated with Visvesvaraya Technological University, Belagavi, Karnataka (India).

This certificate is issued at the request of the Green Collars team for the purpose of the Solar Decathlon India competition.

Student:

Rakesh Shankar - 1RV20ME083

5TH SEMESTER, MECHANICAL ENGINEERING DEPARTMENT

Subl --ab Principal Signature: ecfet RV COLLEGE OF ENGINEERING BENGALURU - 560 059