

D Y PATIL SCHOOL OF ARCHITECTURE LOHEGAON, PUNE.

TEAM GET THEM GREEN

FINAL DESIGN REPORT

APRIL 2023

MULTI - FAMILY HOUSING

PROJECT PARTNER C. H. PATIL & SONS

Solar T Decathlon

TABLE OF CONTENTS

LIST OF TABLES	3
LIST OF FIGURES	3
RESPONSE TO REVIEWERS COMMENTS	4
EXECUTIVE SUMMARY	7
1. TEAM INTRODUCTION	8
1.1 Team Name - Team GET THEM GREEN	8
1.2 Institute Name - D Y Patil School of Architecture, Lohegaon	8
1.3 Division- Multi - Family Housing	8
1.4 Team Members	8
1.5 Approach	9
1.6 About Institute	9
1.7 Faculty Lead and Faculty Advisors	. 10
1.8 Industry Partner - Samuchit Enviro Tech, Pune	. 10
1.9 Design Process	. 10
2. PROJECT INTRODUCTION	. 11
3. GOALS AND STRATEGIES	.12
3.1 ARCHITECTURAL DESIGN	.12
3.2 ENERGY PERFORMANCE	.12
3.3 WATER EFFICIENCY	.12
3.4 RESILIENCE	. 12
3.5 CARBON NEUTRALITY	.12
3.6 HEALTH & WELL-BEING	.13
3.7 INNOVATION	. 13
3.8 AFFORDABILITY	.13
4. DESIGN PROCESS	.14
5. DESIGN DOCUMENTATION	.16
ENERGY PERFORMANCE	. 17
Passive Strategies	. 17
DAYLIGHT ANALYSIS	. 20
ENERGY PERFORMANCE INDEX:	. 20
WATER PERFORMANCE	. 20
A. PRELIMINARY WATER CYCLE DIAGRAM ON-SITE	. 20
B. WATER CONSUMPTION- REDUCE	. 21
C. RAINWATER HARVEST- RECYCLE	. 22
D. WATER TREATMENT – RECYCLE & REUSE	. 22
ARCHITECTURAL DESIGN	. 24

EMBODIED CARBON	
RESILIENCE	
RESILIENCE FOR STRUCTURAL STABILITY	
RESILIENCE FOR FIRE PROTECTION SYSTEMS	
RESILIENCE FOR HEAT WAVES	
INNOVATION	31
AFFORDABILITY	
HEALTH AND WELL-BEING	34
THERMAL COMFORT	34
VENTILATION DESIGN	34
ADEQUATE DAYLIGHTING	
ENGINEERING AND OPERATIONS	35
VALUE PROPOSITION	
APPENDIX A	
PARKING STATEMENT	
PARKING SYSTEMS	
APPENDIX B	
SOLAR CALCULATIONS	
APPENDIX C	
WATER CONSUMPTION, WASTEWATER TREATMENT & RAINWATER HARVEST	
APPENDIX D	45
INPUT OUTPUT PARAMETERS FOR SIMUATION	45
APPENDIX E	50
CALCULATING EMBODIED CARBON	50
APPENDIX F	55
CROSS VENTILATION CALCULATIONS:	55

LIST OF TABLES

Table 1: Response sheet to Reviewer's 1 comments
Table 2: Response sheet to Reviewer's 2 comments
Table 3: Tagging of design process
Table 4: Project Summary
Table 5: Building Area Program
Table 6: Chart showing efficient lighting systems
Table 7: Water consumption reduction by using water-efficient plumbing fixtures.
Table 7 stage 1: data is collected from Customized Rainfall Information System (CRIS)
Table 8: Calculating average rainfall & Rainwater harvesting potential on-site.

LIST OF FIGURES

Figure 1: Team members, Qualifications and Roles	
Figure 2: Faculty lead and Faculty advisors, Qualifications	
Figure 3 Process through the Deliverables	
Figure 4: Diagram showing water cycle	
Figure 5 TYPICAL FLOOR LAYOUT	
Figure 6 BUILDING SECTION Error!	Bookmark not defined.
Figure 7 AAC Block	

RESPONSE TO REVIEWERS COMMENTS

SECTION	REVIEWER 1 COMMENT	OUR RESPONSE
ENERGY PERFORMANCE	It's a good work done on detailing the supply and demand situation and a sincere effort to reduce EPI meeting the BEE standards. I also observe few critical components on demand side with lower operation hrs estimations like Refrigerator and TV. Besides we have not captured the highest energy consuming appliances like AC and Geysers. While the developer may not be providing it but the User will still be installing it and it needs to be estimated which will have its impact on Supply loads as well and hence an impact on Net Zero calculations	Thank you for your observation which helped a lot. We kept that in mind and revised our EPI calculation keeping in mind the highest energy consuming appliances like AC and Geysers.
WATER PERFORMANCE	Good work. I did not observe any reference to the NBC Guidelines	Thank you. References are added in the Deliverable 4
EMBODIED CARBON	Appreciate the guidance of the external organization enabling the team to understand the impact and use the knowledge in reducing it as much as possible.	Thank you.
RESILIENT DESIGN	Like the comprehensive approach. Would like the team to consider flooding as another risk with Mumbai having experienced the same quite a few times in Monsoon and have a strategy to avert/minimize the risk	Thank you. We have considered flooding for the Deliverable 4
ENGINEERING & OPERATIONS	Good work around Solid waste management and reduction of Water consumption. Will advise team to consider BMS and other digital means for managing Services thus improving Productivity and turn around time for inhabitants and include the same in report.	We have tried to incorporate some systems except BMS.
ARCHITECTURAL DESIGN	Good work	Thank you
AFFORDABILITY	Did not find this in the available documents. Regret if I missed it.	A comprehensive study has been done on Affordability, Page

INNOVATION	Good work	Thank you.
HEALTH & WELL BEING	Thoughtful approach for the apartments. Would like to see the same for Public spaces	Revised work with the mentioned observation has been updated.
VALUE PROPOSITION	Comprehensive work for the Partner	Thank you.
ADDITIONAL COMMENTS:	Good work for the stage. Irrespective of whether the Project qualifies for the next level, I find this to be a quality work and recommend the interventions be used in the Project.	Thank you.

Table 1: Response sheet to Reviewer's 1 comments

SECTION	REVIEWER 2 COMMENT	OUR RESPONSE
ENERGY PERFORMANCE	You have well highlighted the passive strategies and details. Wherever you put the plan, please include north (it is essential to understand your passive strategies). 1.09 sq.m meters is significantly less for one solar panel generating 445 W. Also, you have yet to consider energy losses of generation and storage of solar energy. In this case, you would need more area to put solar panels. There is some mistake with the EPI; 151 kWh/m2 per year is too much. In the project description you have written 60 kWh/m2 per year (page10).In D2, I highlighted that the EPI could be less than 50 kWh/m2 per year, but you misunderstood and considered it a net reduction. EPI of 151 is too high; how have you created this number? Please try to correct this and talk to TRG and your guides; this is a significant mistake that you should cater.	The EPI has now been reduced to 80 kWh/m2-yeor. And the solar panel calculations has been updated and the reference for the same has been given in the appendix.
WATER PERFORMANCE	You have correctly highlighted the water requirements, usage, reclamation and recharge. Though	Firstly the typo has been corrected.

	there are a few typos it seems 35 kilolitres per day (page-19) How much reduction were you able to make per capita is not mentioned, i.e. how much lpcd was baseline and how much was design?	Secondly, the graphs has been included highlighting the per capita consumption.
embodied Carbon	I guess you have correctly pointed out the reduction in carbon, but you can use a good representation through sectors.	Noted.
resilient Design	Seems fine.	Thank you.
ENGINEERING & OPERATIONS	Only few tables I can see in the appendices, though a whole complete section should be included.	A whole new section has been added in the report.
ARCHITECTURAL DESIGN	It is good that you have put in plans to understand but views and write is equally important. Site could have been generated in a better way. Would love to see some furniture in the section.	The mentioned corrections have been done in the report. We have tried to represent site in a better way. And have also added some furniture in the section.
AFFORDABILITY	It is good that you have mentioned the cost-benefit as per materials but cost benefit analysis could have be shown for all materials even window glass.	The same has been updated in the report.
INNOVATION	Seems fine.	Thank you.
HEALTH & WELL BEING	You have well highlighted that passive strategies and its benefits to occupants. But these strategies should be tested through calculations, simulations as per indoor thermal comfort, thermal standards and visual comfort standards.	We have provided the cross ventilation calculations in the appendix which is very well taking care of thermal comfort.
	Seems fine, although pictures could be used to pitch.	We have tried to represent value proposition graphically.
ADDITIONAL COMMENTS:	You have presented the work very well though you must keep an eye on the details and technicalities.	Thank you.

Table 2: Response sheet to Reviewer's 2 comments

EXECUTIVE SUMMARY

The team "TEAM GET THEM GREEN" from D Y PATIL SCHOOL of Architecture aims to design Net Zero-energy-water and climate-resilient buildings, contributing to live projects by partnering with leaders in real estate development.

It consists of young architects and civil engineer from a range of age groups. The project "AKASA", which means ether or atmosphere is the expanse in which everything lives and operates (that which allows space) and is surrounded by elements such as water, wind, and fire.

Team Get Them Green has created a net zero, locally sourced, environmentally friendly, better thermally comfortable, and universally accessible multifamily housing solution. The structure will offer improved livelihood options as well as a refuge of safety during difficult times.

As a team, we are incredibly appreciative of the competition for broadening our perspectives. Every step of the way, we try to learn something new while providing each service with honesty and care.

Due to limited space, unique geometry and terrain, and the ongoing need for housing, Mumbai has been experiencing the reconstruction of old buildings over the past 15 years.

To understand this better we did a **socio-economic background of users and people**. Mumbai is also facing the prominent environmental issue of air pollution. And since the site is in close proximity to Link Road, the **air quality is deteriorating**. Another issue is **Solid Waste Management** which causes diseases in the vicinity of the site.

We considered these as a means of getting ready for this impending catastrophe. Borivali West, a developed residential neighborhood in Mumbai's north, mostly serves the upper-mid market. Because of the high density and emphasis on profitability in Mumbai, redeveloping multifamily housing in a sustainable fashion has been a challenge for Team Get Them Green.

1. TEAM INTRODUCTION

- 1.1 Team Name Team GET THEM GREEN
- 1.2 Institute Name D Y Patil School of Architecture, Lohegaon.
- 1.3 Division- Multi Family Housing
- 1.4 Team Members-

Figure 1: Team members, Qualifications and Roles

1.5 Approach-

The Team GET THEM GREEN participated in Solar Decathlon India (SDI) 2022-23 as it gives an opportunity for student teams to design Net Zero-energy-water and climateresilient buildings, contributing to live projects by partnering with leaders in real estate development. The team members involved are from multi-disciplinary fields as mentioned in the team list adopting a multidisciplinary approach for effective decision-making and enhanced building performance, right from the conceptual stage till the completion of the project.

We as a team along with our faculty lead and the faculty advisor sought from the beginning to grasp and have a clear concept of what the solar decathlon India 2021–2022 intends us to accomplish. We aim to improve our teammates' experiences and skills in order to win the competition and fulfill the ten contests, as well as their requirements, successfully.

To move further, we fragmented the tasks depending on our teammates' areas of interest and aptitude. Design meetings and work discussions among team members are held daily. Any doubts or ideas are discussed with the faculty lead and advisor. These meetings with the faculty lead and advisor are held at least twice a week. Any corrections or suggestions are discussed to carry out the work further. This helps the team work together, gain more confidence and minimize errors.

1.6 About Institute-

D Y Patil School of Architecture was established in August 2011 under Savitribai Phule Pune University (SPPU). Within a short span of 10 years the school has established itself as one of the top 5 institutes in the Pune region.

The Master's in environmental architecture (M. Arch) program was started in the year 2013. The learning environments fosters research and creativity, honing environmentally conscious professionals, exposure to essential and new issues in the construction industry, and technically sound versatile personalities ready to take their place in the world.

9

1.7 Faculty Lead and Faculty Advisors-

FACULTY LEAD Prof. Prathama Jhaveri Associate Professor B.Arch & M.Arch (Environmental Architecture)

FACULTY ADVISOR Prof. Shubhada Chapekar Principal, Professor in Architecture B.Arch (Hons) & M.Arch (Environmental Architecture)

FACULTY ADVISOR Prof. Aparna Rahul Mhetras HOD (M.Arch Env. Arch.) Professor B.Arch & M.Arch IGBC Accredited Faculty

1.8 Industry Partner - Samuchit Enviro Tech, Pune

Figure 2: Faculty lead and Faculty advisors, Qualifications

1.9 Design Process

As Team **Get Them Green** from completing SLMs to distributing tasks, we had gone through various design discussions and innovative ideas to have solutions to cater to our passive design needs. We have assigned the team members on

c

JELIVERA BLE

basis of individual expertise and understanding of the parameters enlisted in the design brief to achieve our required goals for the proposed design project. Figure 3 Process through the Deliverables

From choosing a site in Mumbai vicinity to curating a building area program we got knowledgeable about the byelaws & space planning as for muti-family housing typology. On understanding the through goals the watching comprehensive & well-crafted SLM's, we got to know about various parameters that contribute towards designing an environment friendly structure.

DELIVER

JELIVERABLE

It . was а holistic experience doing the hustle for gathering people having expertise in architecture, engineering & environmentalists on the same page to put forward a collaborative effort collecting towards data for the proposed redevelopment project.

During this phase we explored various software related to climate analysis, energy simulation & daylight analysis to gather data related to EPI & design our fenestration accordingly.

2. PROJECT INTRODUCTION

a	Name of project	Sheetal CHSL	
b	Project partner	M/S C.H. Patil and son's LLP, Borivali, Mumbai	
	C H Patil & Sons entered into the realty business in the year 1975, as a fam		
	conglomerate, with the purpose of providing meticulously planned apartments t		
	discerning customers at affordab	ole prices. Currently, C H Patil & Sons is one of the few	
	Indian Real Estate Development	Company to get an ISO 9001 - 2008 certification.	
	Key Persons - Rohit Patil , Amit Pat	til (Partner at C. H. Patil & Sons)	
С	Brief description of project		
1	Location	Borivali, Mumbai	
2	Co-ordinates	19.22 N, 72.84 E	
3	Altitude	14m MSL	
4	Climate zone	Warm and humid as per ECBC 2017	
5	5 Typology Multifamily		
6	Current Stage	Planning	
7	Hours of Operation	24 hrs	
d	Site area	1489.75 sqm	
	Approx Bup area	4806 sqm	
	Total carpet area	4005 sqm	
е	EPI	60 kWh/sq.m approx (GRIHA 2015)	
f	Preliminary budget of onsite SPV s	system	
	Terrace area	350 sq.m	
	60% available for renewable		
	energy	210 sq.m	
	Energy generation approx	1,94,910 kwh/year	
	Cost	40 lakhs	
g	g Project preliminary Budget - Rs.41000 / sq.m		
h	n Project partner requirements		
1	Affordability		
2	Comfort		
3	Sustainable measures		
4	Saving energy/ electricity		

Table 4: Project Summary

3. GOALS AND STRATEGIES

3.1 ARCHITECTURAL DESIGN

Aim: Design a building with better thermal comfort and accessible to all.

Strategy:

- 1. Design using passive strategies for improved ventilation, lighting and thermal comfort.
- 2. Associate universal design principles to make the space functional for everyone.

3.2 ENERGY PERFORMANCE

Aim: To reduce the EPI

Strategy:

- 1. Equipping the building with energy efficient fixtures.
- 2. Proposing maximum daylight and thermal comfort to minimize energy consumption.
- 3. Generation of on-site renewable energy like Solar PV.

3.3 WATER EFFICIENCY

Aim

Achieving Net Zero Water Building by reducing water consumption by 44%. Harvesting the potential rainwater on-site and reusing treated water for applications such as flushing, landscaping etc.

Strategy:

1. Use of efficient plumbing fixtures and reduced water consumption by 44%.

- 2. Avoiding and limiting the use of lawn areas and instead planting native trees.
- 3. Harvesting Rainwater as the alternate water source by designing slopes.

4. Water recycling by installing the on-site Sewage Treatment Plant and reusing treated water for applications such as flushing, landscaping etc.

3.4 RESILIENCE

Aim: Withstand the earthquakes and heat waves.

Strategy:

Although earthquake occurrence is not very severe (site falls under Zone III, in case of a high-rise building, we aim to work on designing an earthquake resistant structure.

3.5 CARBON NEUTRALITY

Aim: To reduce embodied carbon of building materials with respect to roof, walls, windows and floor by 70%.

Strategy:

1. Replacing conventional concrete roof slab with green cement and adding stone wool insulation to it reduces carbon factor by a difference of 19.96tco2e value.

- Replacing conventional RCC wall with lower co2 factor emitting material which is AAC blocks, embodied carbon is reduced to 0.6tco2e.
- 4. Installation of double wooden glazing window embodied carbon is reduced to 0.0004tco2e which is carbon neutral.
- 5. Instead of using cement as in conventional buildings, we tried to replace it with use of green unreinforced C40/50 cement which is 75% cement replacement, embodied carbon is reduced to 1.73tco2e.

3.6 HEALTH & WELL-BEING

Aim: To enrich the lifestyle of residents by providing an environment that is comfortable for its occupants.

Strategy:

- 1. Green corridors & existing vegetation.
- 2. Use of passive architecture to increase cooling hours.
- 3. Naturally ventilated passages.
- 4. Low VOC materials.
- 5. Physical exercise amenities.
- 6. Connection to nature.

3.7 INNOVATION

Aim: To collect organic waste from each house and convert into compost.

Strategy: We can provide an Organic waste composter at a particular floor which will convert the organic waste generated from households for which the tenements will get some rebate in their monthly maintenance bill.

3.8 AFFORDABILITY

Aim: To make the project economically viable for project proponents by curtailing the financial costs of the execution and the operations of the project.

Strategy:

- 1. Use of local materials and cast In-situ construction.
- 2. Preferring hollow beams and hollow slabs.
- 3. Reducing the steel bar diameter with each succeeding floor.
- 4. These options help to ensure less usage of materials and hence the investment.

4. DESIGN PROCESS

A BASE MODEL WITH THE CORE WITHIN LEAVING THE SITE MARGINS AS PER REGULATIONS.

ENHANCE WIND CIRCULATION ACROSS THE SITE AND WITHIN THE BUILDING BY CREATING PUNCTURE WITHIN THE BUILDING.

STAGGERING THE SPACES SO THAT EVERY ROOM HAS 2 OPENINGS, THUS ENHANCING CROSS VENTILATION.

ORIENTED THE STRUCTURE N-S (E-W LONG AXIS) TO RECEIVE LOWER ANGLES OF SUN

MAXIMUM OPENINGS TOWARDS NORTH AND SOUTH

OPTIMIZING THE COMMON LOBBY SPACES TO REDUCE MATERIAL WASTAGE AND PROVIDING CROSS VENTILATION IN THE LOBBY.

PARAMETERS	DESIGN PROBLEM	STRATEGY
MASSING	Due to site constraints and setback, the building footprint is small.	A rectangular block having only four apartments on each floor with one service core.
ORIENTATION	Higher radiation on East and West façade due to lower sun angles.	Maximum openings towards north and south, and minimum on the east-west façade.
	Buildings surrounding the site with height more than 32 m, affecting the wind flow.	Puncture in the service core on the east-west side so that wind flows through the building.
FLOOR LAYOUT	Efficient consumption and no wastage of FSI in lobby area.	The common lobby area is optimized and planned fully free of FSI.
	apartments as per project proponent's requirement.	Plan is mirrored to improve the area efficiency.
UNIT LAYOUT	Optimizing FSI Adequate day lighting Maximize cross ventilation and	The area designated is optimized by providing larger rooms and smaller areas for passages.
	natural ventilation	Ideal fenestration for ample daylight is proposed.
		Every room has openings on 2 walls to increase cross ventilation.
SHADING / FENESTRATION	Cater to the rain, wind and radiation	Material of the window and glass with low U – value and
	Use shading device as per the orientation of the window.	SHGC value, and high VLT for light transmission.
		Green window proposed to reduce radiation. Open-able windows instead of sliding to ensure maximum ventilation

5. DESIGN DOCUMENTATION

Figure 4: FRONT ELEVATION VIEW

ENERGY PERFORMANCE

Passive Strategies

The first step towards designing a net zero building is to implement passive strategies wherever apt for the project, right from the site zoning to building form and orientation to designing shading devices. Passive strategies lead to the form and design of a

building. Sun, wind, light and the micro-climate has been taken into consideration while designing the building.

a. Orientation

The orientation of the building is North-South. There are minimum openings towards East and West direction, thus avoiding the lower altitude angles of sun.

b. Cross Ventilation

Since Mumbai has a Warm and Humid climate, every room has been designed with openings on two sides. This will promote cross Figure 5: ORIENTATIONAND OPENINGS

ventilation and provide thermal comfort. Wind circulation through the building is proposed by designing openings in the core.

Hours

SQ. M

SQ. M

SQ. M

5.5 367.6

147.04

220.56

	WALL	ROOF	WINDOW
BASE CASE	RCC Wall	Concrete slab with no insulation	Triple wooden glazing U - value = 5.7
		U-value = 3.92 W/m²K	SHGC = 0.67
			Double wooden
PROPOSED	230mm thick AAC block	Green Cement with stone	glazing
CASE	$U_{\rm value} = 0.4 W/m^2 K$	wool insulation	U - value = 1.3
	0-Value - 0.4 W/III K	U-value = 0.83 W/m²K	SHGC = 0.3
			VLT=60%

SOLAR PHOTOVOLTAIC SYSTEM CALCULATION

SOLAR PV CALCULATION

As a thumb rule, we require 8 sq meter area to 20 sq meter area for a 1 kW capacity of electricity production in 1 hr. from 1 solar pv panel. (REGION SPECIFIC)

Solar window for Mumbai = 10.00 am to 15.30 pm
TOTAL AREA
40 % CIRCULATION SPACE
60 % AREA AVAILABLE OF SOLAR PV INSTALLATION

Average solar irradiation in MAHARASHTRA state is 1266.52 W / sq.m

1kWp solar rooftop plant will generate on an average over the year 5 kWh of electricity per day (considering 5.5 sunshine hours)

Assuming 16 sq meter area for a 1 kWH capacity of electricity production in 1 hr. from 1 solar pv panel.

So 5 kWH capacity of electricity production in 5.5 hrs. from 1 solar pv panel.

AS PER MNRE, PROJECT ROOF GENERATES 22KW PER DAY CONSIDERING 20% EFFICIENCY FROM THE CURRENTLY AVAILABLE SOLAR PV TECHNOLOGIES AVAILABLE

IOTAL NUMBER OF SOLAR PANELS REQUIRED TO GENERATE 22KW ELECTRICITY PER DAY =	22 PANELS
TOTAL ELECTRICITY GENERATION ANNUALLY CONSIDERING 300 SUNNY DAYS =	33000 kWH

Refer appendix B for detailed calculation

EPI PROGRESSION COMPARISON CHART

Refer Appendix D for output calculations.

	PROPOSED DESIGN CASE					
	Building Envelope	Values with units	Total Energy [kWh]	Mode of data collection	BUP area in sqm	
1	Wall	0.4 [W/m2-K]				
2	Windows	1.3 [W/m2-K]				
	Shgc / Vlt	0.3 / 0.6				
3	Floor	1.5 [W/m2-K]				
4	Roof	0.83 [W/m2-K]	120853.76	SIMULATION		
5	WWR	17%			5131	
6	LPD	5 [W/m2]				
7	EPD	0.5[W/m2]				
8	ELPD	5 [W/m2]				
9	Lift & Pump	Lumsum	50000	ASSUMPTION		
10	1 Ton Split AC unit					
	No. of units = 140 Living) Daily avg usage = 8 hours per day as (4593) EC by 1 ton AC NET EC by overall AC X 365	of units = 140 (All bedroom ng) y avg usage = 8 uncomfortable rs per day as per simulation 23) by 1 ton AC = 0.6 Kwh EC by overall AC = 140 X 8 X 0.6 55		PRESCRIPTIVE		
	EPI [kWh/m2]		416133.76		81.01	

Refer Appendix D for output calculations.

19

DAYLIGHT ANALYSIS

According to the daylight simulation, **75% of the floor area is naturally lit as shown in the diagram.**

Figure 9 DAYLIGHT SIMULATION ANALYSIS

ENERGY PERFORMANCE INDEX:

We incorporated components on demand side with lower operation hrs estimations like Refrigerator and TV. Besides we have captured the highest energy consuming appliances like AC and Geysers. While the developer may not be providing it but the User will still be installing it and it needs to be estimated which will have its impact on Supply loads as well and hence an impact on Net Zero calculations. Considering all these changes and running the simulation the preliminary result for EPI we obtained now is **80 kWh/m2-year**.

WATER PERFORMANCE

A. PRELIMINARY WATER CYCLE DIAGRAM ON-SITE

Figure 10: Diagram showing water cycle

B. WATER CONSUMPTION- REDUCE

Water Consumption by using Water Efficient Plumbing Fixtures						
		Baseline	Design Case	Duration	Baseline Flow	Design Case Flow
Water Closet (Full Flush) - Baseline	LPF	6	3	1	1341.00	670.50
Water Closet (Half Flush) - Baseline	LPF	3	1	1	2011.50	670.50
Faucets / Taps - Baseline	LPM	6	3.8	0.15	1609.20	1019.16
Health Faucets - Baseline	LPM	6	3.8	0.15	201.15	127.40
Shower	LPM	10	5.8	8	17880.00	10370.40
Kitchen Sink	LPM	6	3.8	0.15	1206.90	764.37
Total Occupants (including visitors)	Numbers	224				
Occupants - Male	Numbers	112				
Occupants - Female	Numbers	112				
Daily Usage		Men	Women			
Water Closet (Full Flush)	Numbers	1	1			
Water Closet (Half Flush)	Numbers	3	3			
Faucets / Taps	Numbers	8	8			
Health Faucets	Numbers	1	1			
Shower	Numbers	1	1			
Kitchen Sink	Numbers	6	6			
Total Consumption Baseline Flow	Litres/Day	24249.75				
Total Consumption Design Flow	Litres/Day	13622.33				
Total Consumption Design Flow	KL/Year	4972.15				
Total Consumption % savings	%	44				

Table 1: Water consumption reduction by using water-efficient plumbing fixtures.

Source of baseline LITRES PER FLUSH (LPF) / LITRES PER MINURE (LPF) -

- 1. National building code of India 2016- vol 2 part 9 water supply 4.7.3.3
- 2. Uniform plumbing code India, 2016

Irresponsible usage of water and overexploitation of groundwater sources has led to water shortage in Mumbai. Therefore, **water consumption is brought down by 44 %**.

Set Them GREEN

WATER-EFFICIENT PLUMBING FIXTURES

New GROHE WaterCare Tempesta II Showers, features a reduced flow rate of only 5.8 l/min. **Kohler kumin kitchen sink cock tap** features a reduced flow rate of only 3.8 l/min.

Figure 11: Grohe Water Care Tempesta II Showers

Figure 12: Kohler Kumin Kitchen sink cock tap

C. RAINWATER HARVEST- RECYCLE

Stage 02 - Calculation of Rainwater Harvesting Potential					
Title	UoM	Number	Run off Coefficient	Pervious Area	
Cemented/ Tiled Roof (terrace)	sqm	367.60	0.95	349	
Flat Vegetation (on Ground - motherearth)	sqm	560.00	0.20	112	
Pavement area (Hardscape Area)	sqm	561.70	0.95	534	
Vehicular road	sqm	0.00	0.95	0	
Total Site Area	sqm	1489.30		995	
Total Impervious area Roof	sqm	367.60		883	
Total pervious area Non Roof	sqm	1121.70		112	
Total Rainwater Harvesting Potential onsite per day	Cu.m		35.71		

Table 2: Calculating average rainfall & rainwater harvesting potential on-site.

Rainwater potential on-site is around **35710 Liters/day** which is recycled by filtering and **27000 Liters/day** of rainwater is stored in rainwater harvesting tank & reused for flushing and landscaping.

Waste water treatment Reuse &	Waste water treatment Reuse & Recycle				
To tal Volume of waste water generated	litre s∕d a y	13622			
Flow from flush fixtures (black water)	litre s/d a y	1468			
Flow from flow fixtures(grey water)	litre s/d a y	12154			
Capacity of Sewage Treatment Plant	litre s/d a y	12000			
Percentage	%	88%			
Efficiency of STP	%	0.95			
Volume of treated waste water available daily	litre s/day	11400			
Percentage	%	84%			
A vailable Total Rainwater Harvested onsite	litre s/d a y	27000.00			
Total Water Recycled onsite in Monsoon days	litre s/d a y	38400.00			
Total Water Reused onsite daily during Dry days	litre s/day	11400.00			

D. WATER TREATMENT – RECYCLE & REUSE

	Valof	Volun	ne of Water R	te u se d	Landscape Water Ca	lculations
Application	water required (ltrs)	Tre a te d Wa ste Wa te r (Itrs)	Surplus Treated Water in dry season	Surplus Treated Waterin monsoon season	Landscape area(sq.m)	560.00
Flushing	1468	1468			daily water (ltrs/sq.m/day)	1.20
Landscaping	672	672			Total water daily required (ltrs/day)	672.00
Total	2140.40	2140.40	9260	36260	Annua I Requirement (litres/yr)	161280.00
Total volume of water required (for landscaping & flushing)					2140	
Total volume of treated waste water water used (for					2140	
Surplus Treated water returned to the source in dry season					9260	
Surplus Treated water returned to the source in monsoon season					36260	

Table 9: Calculating Wastewater recycled & reused on-site. Table 10: Calculating Surplus treated water returned to the municipality.

The main challenge faced in Borivali is the unpredictable water supply systems; they get water for an average of 4 to 6 hours a day. Considering this, we aimed to formulate an integrated water system that is self-sufficient and less dependent on nature. Considering everything, we have proposed the roof of the building and site slopes be a catchment area.

Refer Appendix C for detailed calculations.

Rainy FL-500 filtration system is used to remove the dirt and impurities with more than 90% efficiency, making **27000 liters/day of harvested rainwater** suitable to use on monsoon days & further

en Ended Drain Outle

redirected for reuse for domestic purposes like irrigation and flushing.

Additionally, the 13622 liters/day outflow of wastewater in form of grey water and black water is treated in a **sewage treatment plant on site making efficient 11400 liters/day of treated water** available for use in flushing and irrigation purposes in dry days.

ARCHITECTURAL DESIGN

Figure 13: SITE PLAN

Figure 15: Fenestration design

Figure 16: TYPICAL FLOOR LAYOUT

Figure 17: TERRACE FLOOR LAYOUT

Figure 18: SECTION AA'

26

Figure 19: SECTION BB'

27

EMBODIED CARBON

System	Base case	Material	spec.	Proposed	Material spe	ec.
				case		
	lotal	U-	Co2	lotal		Co2 factor
	carbon	value		carbon	(w/m²²ĸ)	(1)
	(tco2e)	(w/m- k)	()	(tco2e)		
Α.	21.69			3.136	0.83	0.072
ROOF	(Concrete			(Green	(Green	(Green
	roof slab	3.92	0.9	cement	cement)	cement)
	with no			with stone	+	+
	insulation)			wool	0.038	0.74
				insulation)	(Stone	(Stone wool
					wool	insulation)
_	1 500		0.49		insulation)	5.0
В.			0.42 (PCC	U.6		5.2
WALL	RCC Wall +			thick AAC		
	ent hars)	1 95	•vaii) +	hlock +	04	15
	enibuisj	1.70	15	Reinforce	0.1	(Reinforcem
			(Reinforc	ment bars)		ent bars)
			ement			onnoarsy
			bars)			
С.	0.002	U-	· · ·	0.0004	u-value =	
WINDO	(Triple	value	0.052	(Double	1.3	0.04
W	wooden	= 5.7		wooden	SHGC =	
	glazing)	Shgc		glazing)	0.3	
		= 0.67			VLT=60%	
D.	24.78 (RCC	1.67	0.9	1.73	0.83	0.072
FLOOR	Hooring)			(Green		(Green
				cement)		cement)

Refer Appendix E for detailed calculations, sections and values given and their references.

Base Case

Proposed Case

Figure 20: Chart showing total carbon emission from systems used in proposed case compared to base case

Figure 21: % Reduction achieved in carbon emission from various systems

CONCLUSIONS

- A. **ROOF WITH STONE WOOL INSULATION-** the CO₂ emission of green concrete for 80% replacement is 36% less, 70% replacement is 32% less, 60% replacement is 28% less when compared to Normal concrete. So we concluded that 80% replacement is adoptable for the usage as the replacement of the normal concrete since there is less emission of CO2.
- **B. WINDOW-** The latest research by Inspired Efficiency, a new energy, sustainability and carbon consultant, and resource-efficiency and footprint expert Circular Ecology shows that triple-glazed windows aren't necessarily the lowest carbon option. Triple glazing have an additional layer of glass, but also a second pocket of gas in between the glazing panes. This results in lower emissions in operation, but comes at the price of increased embodied carbon.
- C. FLOOR- Rammed Earth is used as flooring. (Refer Appendix)

RESILIENCE

RESILIENCE FOR STRUCTURAL STABILITY

The structure is included with a shear wall system for the core as this system provides adequate stiffness to the structure. built rapidly using the same frame work and at a lower cost. Long columns which act as shear walls are used in between the floor plate without intrusion to maintain the lateral stability.

RESILIENCE FOR FIRE PROTECTION SYSTEMS

• Fire Protection Systems are an integral, essential aspect of residential habitat design. The intricacy of these systems in a high-rise building is exponentially

Figure 22: STRUCTURAL PLAN

more complex than regular dwellings. The fire safety systems are designed and installed as per the 'National Building Code (NBC) of India, Part – 4, Fire and Life Safety'.

- In accordance with regulatory norms, **MULTI DETECTORS** are placed in every room across the floor plate barring kitchens.
- The core of every floor is provided with early warning fire measures like HAND-HELD FIRE EXTINGUISHERS AND WATER HOSE REELS. These extinguishers are recycled every year and the pressure is checked regularly to ensure effective functioning.
- The **AUTOMATED SPRINKLER SYSTEM** is provided in every room which is fed through the pressurized network of pipes.

RESILIENCE FOR HEAT WAVES

SHOCK AND STRESSES

Heat waves begin when high pressure in the atmosphere moves in and pushes warm air towards the ground. Majority of the recreational spaces are protected from these heat waves by the building shade throughout the day creating low pressure in the landscaped area. And the urban heat island effect in the future is reduced by the shaded vegetation area.

POWER FAILURE

Solar PV panels to be installed on site.

WASTE DISPOSAL

Multi-coloured bins for segregating dry & wet waste have been provided for household waste collection which will be delivered to the Material Recovery Facility in nearby vicinity.

FLOODING

To cater the flooding issue, the site has been raised from the road level. In addition to this, plinth of 300mm is proposed to avoid the water retention on the site.

INNOVATION

WASTE COMPOSTER

Excel OWC (Organic Waste Convertor) is an **easy-to-use Decentralized Waste Management System**.

It turns large amounts of organic waste such as kitchen waste, garden waste, food processing waste etc. into compost.

The system is designed to eliminate odour and also to remove the problem of irritants such as flies and rats

- Dimension: 2010 mm x 1485 mm x 1370 mm
- Batch Size: 120kg
- Total Connected Load in HP: 13.5HP
- Dimensions: 2010 mm x 1485 mm x 1370 mm

ROOM TYPOLOGY	NUMBER OF OCCUPANTS	NUMBER OF DAYS IN A WEEK	TOTAL WASTE GENERATED DAILY	TOTAL WASTE GENERATED DAILY /TYPOLOGY	TOTAL WASTE GENERATED DAILY /FLOOR
2 BHK	4	7	28 KG	56 KG	
З ВНК	5	7	35 KG	42 KG	70 KG

TOTAL NUMBER OF FLOORS	TOTAL WASTE GENERATED DAILY /FLOOR	TOTAL WASTE GENERATED DAILY BY THE BUILDING
14	98 KG	1372 KG

DAILY TREATMENT CAPACITY OF	1 BATCH TREATMENT CAPACITY	TOTAL ENERGY REQUIRED TO RUN
OCW300	DAILY	1 BATCH (120KG)
1500 KG	120 KG	10.0656 kwh (13.5 HP)

1 horsepower is equal to 0.74569987 kilowatts

TOTAL NUMBER OF BATCHES REQUIRED DAILY(KG)	TOTAL ENERGY REQUIRED TO RUN 12 BATCHES
1440 KG (12 BATCHES)	120.672 kwh

AFFORDABILITY

AAC block: Affordability Features

AAC blocks are also known as **autoclaved aerated concrete blocks**, which are one of the environment friendly and lightweight construction materials.

Color	Greyish-white
Lightweight	50% lighter than red bricks
Fire resistance	Between two and six hours, based on the thickness
Energy efficiency	25% reduction in air-conditioning costs
Thermal efficiency	Three times higher than clay bricks
Water absorption	About 10% of its weight
Sound insulation	42 dB (approximately)

Affordable cost Nearly one-third of the cost of regular bricks

(Source: https://housing.com/)

The lightweight AAC blocks are easy to transport, which helps to save on the overall logistics and shipping costs, as compared to the costs involved in the transportation of traditional bricks. The material contains small air pockets and hydrogen is used to foam the concrete, thus, giving it an excellent heat insulation property that allows temperatures to be warm in winters and cool in summers. Therefore, it can significantly **lower your air-conditioning costs by about 25%.**

Being lightweight, energy-efficient and

easy to install, AAC blocks also **minimize labor costs**. The material is lightweight and thus, contributes less to dead load and the requirement of structural steel can be minimized in RCC framed structures. Therefore, it can save on construction costs, when chosen for high-rise constructions.

Cost of Clay Brick of dimensions 0.23m X 0.11m X 0.07m = Rs. 5/- (per piece)

∴ Cost of 1m³ Clay Brick = Rs. 2823. 26/-

But, cost of 1m³ of AAC blocks used in our project = Rs. 2000/-

(Source: https://www.indiamart.com/)

Hence approximately Rs. 800/- of building units are saved behind every $1m^3$ of construction.

Electricity Cost Savings

Total Generation/ Day	Cost/ 1kW	Savings/ Day
534kW	Rs. 11/-	Rs. 5784/-

Water Savings

Water Saved/ Day	Water Reused/ Day	Water Harvested/ Day
44%	11400 liter/day	35.71 cu.m

Cost-benefit analysis for materials used as per proposed case

	Wall System	Roof System	Window System	Flooring System
Base Case	230 mm thick RCC Wall	Concrete roof slab with no insulation	Triple Wooden glazed window (6mm thick window glass + 28mm thick window frame)	RCC Flooring
	U value= 1.4 W/m ² K Carbon Factor: 0.42t Embodied Carbon: 1.14 tco2e Rate: Rs. 186/- per cu. ft.	U value= 1.67 to 0.83 W/m ² K Carbon Factor: 0.9t Embodied carbon: 21.69 tco2e Rate: Rs. 255/- per cu. ft.	U value= 0.8 W/m ² K Carbon Factor: 0.052t Embodied Carbon: 0.002 tco2e Rate: Rs. 165/- per sq. ft.	U value= 0.8 W/m ² K Carbon Factor: 0.9t Embodied Carbon: 24.78 tco2e Rate: Rs. 180-200/- per sq. ft.
Proposed Case	230 mm thick AAC Block	Green concrete roof slab with Stone Wool Insulation	Double Wooden glazed window (4mm thick window glass + 10mm thick window frame)	Green Concrete Roof slab
	U value= 0.7 W/m ² K Carbon Factor: 5.2t - 5.9t Embodied Carbon: 0.6 tco2e Rate: Rs. 54/- per cu. Ft.	U value= 0.038 W/m ² K Carbon Factor: 0.072t Embodied Carbon: 1.73 tco2e Rate: Rs. 90/- per cu. Ft.	U value= 2.6 W/m²K Carbon Factor: 0.04t Embodied Carbon: 0.0004 tco2e Rate: Rs. 105/- per sq. ft.	U value= 0.16 W/m ² K Carbon Factor: 0.072t Embodied Carbon: 1.73 tco2e Rate: Rs. 130/- per sq. ft.
Cost reduced	71%	65%	36%	32%

HEALTH AND WELL-BEING

The design of our built environment affects our health and well-being, and can have long-term implications for quality of life. To truly enhance human well-being, building design needs to move beyond optimizing single parameters such as temperature and humidity, to more holistic approaches that take their cues in health-supporting human behaviors.

Our aim was to enrich the lifestyle of residents by providing an environment that is comfortable for its occupants through following strategies:

THERMAL COMFORT

Due to the orientation and placement of the windows on the plan, there is smooth circulation of wind due to cross ventilation resulting in cooling down the interior temperature of the flats thereby ensuring thermal comfort of the users.

Note: Ensuring that minimum 25% of the regularly occupied spaces (by area) in each dwelling unit shall have an opening (doors/ ventilators/ windows) to the outdoor environment, in at least two of the orientations, better option has been analyzed below.

Figure 24: Analysing better orientation options of building

VENTILATION DESIGN

Since Mumbai has a Warm and Humid climate, every room has been designed with openings on two sides. This will promote **cross ventilation** and provide thermal comfort. Wind circulation through the building is proposed by designing openings in the core.

Shafts are proposed adjacent to two rooms with openings close to beam level. This ensures flow of warm air from the rooms to the shaft.

Figure 25: Analysing thermal comfort options through sketches

ADEQUATE DAYLIGHTING

Design habitable spaces to have access to natural daylight, thereby enhancing the quality of life of the occupants achieve minimum glazing factors at least 50% of the regularly occupied spaces in each dwelling unit.

Figure 26: Seasonal performance of shading, redirection devices.

34

ENGINEERING AND OPERATIONS

1.LIFT SYSTEMS

We are inculcating **SCHINDLER 550 MRL** lift systems which is an energy efficient alternative that provides us with a feature of machine room less elevator design. It not only saves the space on the rooftop but also is cost effective, making it a very feasible option for residential buildings that may be struggling with space when it comes to an elevator installation. Hence, MRL elevators can be a popular choice amongst the property owners that have a strict budget.

LED lights have an extremely long service life. They last up to **20 times longer** than standard light bulbs while consuming less energy. A bright solution for passengers and the environment.

This lift system incorporates high-efficiency regenerative drives which use about **30% less energy** than comparable elevators. The drives are even able to produce energy that can be fed back into the electricity grid immediately.

The motor and traction media developments allow travel heights of up to 150 meters and speeds of up to **3 m/s** while keeping **noise and vibration levels low** and assuring a smooth ride.

2.WATER PUMPING SYSTEM

KBL (KIRLOSKAR BROTHERS LIMITED) has received Star rating from the Bureau of Energy Efficiency (BEE) for 26 models of their submersible pump-sets. This pumping system is capable of pumping water efficiently to each apartment of a highrise building. It gets water supply from the nearby municipal corporation line.

Refer the details in the appendix C attached at the end.

3. SEWAGE TREATMENT SYSTEM

Sewage treatment is a type of wastewater treatment which aims to remove contaminants from sewage generated from the apartments in order to produce an effluent that is suitable for discharge to the surrounding site environment present underground through an outlet.

Figure 27: SCHEMATIC REPRESENTATIONS FOR PUMPING & SEWAGE TREATMENT SYSTEMS

VALUE PROPOSITION

The multidisciplinary team GET THEM GREEN from D Y PATIL University has partnered with the **C H Patil & Sons** to **redevelop** a **5131.00 sq.m residential complex in Borivali** of **38 tenements**. **Situated in the northern part of Mumbai**, Borivali West is a developed residential suburb that majorly caters to the upper-mid segment. Borivali is one of the topmost developing localities with connectivity to the Western Express Highway and good infrastructure facilities such as commercial complexes, schools, and colleges hence attracting a range of tenants- from single, working occupants to expanding families.

The concept included optimizing saleable area and effectively using common areas, preventing space wasting, in order to produce adaptive, flexible dwelling layouts that optimized FSI consumption. In addition, Team Get Them Green worked to uphold the social, ecological, and financial pillars of sustainability.

The pre-existing site includes 4 stories residential building block which would be redeveloped with 60% additional FSI and 14 saleable flats and 38 rehoused flats. Reduced material requirements and rapid construction make it financially and ecologically viable. One of the goals was to make it a zero-maintenance society. Considering inferences from pre-design analysis, modules are arranged in a spacious manner that aids in self-shading thus reducing cooling loads. The building design is focused on reducing cooling loads, and allowing natural daylight to shallow plans filtering solar radiation. The roof and south façade are passively treated due to maximum solar incident radiation. To increase resilience for structural stability, a shear wall is used to construct the lift core walls which allows the structure to be built rapidly using the same framework and at a lower cost.

Irresponsible usage of water and overexploitation of groundwater sources has led to water shortage in Mumbai. Therefore, **water consumption is brought down by 44%**. Rainwater collected on-site at around **35.71 KLD**, will be filtered and reused for domestic purposes **for irrigation and flushing to the rainwater harvesting tank**.

Furthermore, focus on biodiversity through the **use of native plants**, **landscaping strategies**, **green walls**, **and terrace farming intern** increase the thermal comfort of the building. For these reasons, the **target is to reduce the EPI of 60 kWH/m2/year by 20%**.

APPENDIX A

PARKING STATEMENT

CARPET AREA	NO. OF	PARKING	PERMISSIBLE	PARKING
(SQ.M)	FLATS	AS PER	DCPR 2034	REQUIRED
UPTO 45.00	0.00	1 PARKING	FOR 4 FLATS	0.00
45.00 - 60.00	0.00	1 PARKING	FOR 2 FLATS	0.00
60.00 - 90.00	26.00	1 PARKING	FOR 1 FLATS	26.00
ABOVE 90.00	0.00	2 PARKING	FOR 1 FLATS	0.00
	TOTAL P	ARKING		26.00
	10% VI	SITOR		2.6
TO	TAL PARKIN	IG REQUIRE	D	28.60
		SAY.		29
τοτΑ	AL PARKIN	IG PROPO	SED	30.00
NO	OF BIG CAI	RS PROPOS	ED	26.00
NO O	F SMALL C	ARS PROPO	SED	4.00

PARKING SYSTEMS

Technical Data		
MODEL	HBL-2117	HBL-1817
Max. Lifting Load	2000 Kg.	2000 Kg.
Total Length	4300 mm	4300 mm
Total Width	2332 mm	2332 mm
Drive through Width	2084 mm	2084 mm
Total Height	3688 mm	3368 mm
Max. Lifting Height	2100 mm	1800 mm
Lifting/Lowering Time	50/45 Sec.	45/40 sec.
Electrical Required	230- 415V, 1/ 3 Ph, 50 Hz	230- 415V, 1/ 3 Ph, 50 Hz
Working By	Hydraulically	Hydraulically
Lock Release	Electric Auto Release	Electric Auto Release

Compatible Car Segments					
MODEL	UPPER LEVEL	LOWER LEVEL			
HBL-2117	Sedan/ Hatchback	SUV/Sedan/ Hatchback			
HBL-1817	Sedan/ Hatchback	Sedan/ Hatchback			

Figure 4 Parking solutions

APPENDIX B

SOLAR CALCULATIONS

What is New Simplification procedure * DISCOM Information * Knowledge Centre Financing Options FAQ * Gallery Sandes App Contact Us *DLogin * Solar Rooftop Calculator	٩
Solar Rooftop Calculator	
Solar Rooftop Calculator	
1. choose any one of the following C Total Roof Top Area (OR) Solar Panel Capacity you want to install (OR) Vour budget C Total Roof Top Area (OR) C Total R	
1 3 4 4 4 4 4 4 4 4 6 4 6 6 6 6 6 6 6 7 7 1 6 6 7 1 10 1 10 1 10 <th10< th=""> <th10< th=""> <th10< th=""></th10<></th10<></th10<>	
2. Select State and Customer Category MAHARASHTRA Residential	
3. What is your average Electricity Cost 1:	
Calculate	
Solar Boofton Calculator	\sim
Solar Roonop Calculator	^
Average solar irradiation in MAHARASHTRA state is 1266.52 W / sq.m	
1kWp solar rooftop plant will generate on an average over the year 5.0 kWh of electricity per day (considering 5.	5
1 Size of Power Plant	
Eestible Plant size as per your Poof Top Area : 22 0kW	
2 Cost of the Plant :	
ANDE surrent Banchmark Cast (arbum GED)	
View Perchaptic Cost List	/ /
Without subside route and the standard st	
Without Subsidy (Based on current MNRE benchmark without GST):	
With Subsidy 40% upto 3kW & 20% above 3kW upto 10kW (Based on current MNRE benchmark RS. 741779	
3 Total Electricity Generation from Solar Plant :	
Life Time (25 years):	
() Einancial Savings :	
a) Tariff @ Ps 11/ kWh (for ton slab of traffic) - No increase assumed over 25 years -	
A) failing (3.117 kwill (for top stab of traine) - No increase assumed over 25 years .	
Appually:	
Ainitiality . RS. 363000	
Lite-time (25 years) : Rs. 9075000	
Carbon dioxide emissions mitigated is 677 tonnes.	
This installation will be equivalent to planting 1082 Teak trees over the life time. (Data from IISc)	
Disclaimer: The calculation is indicative in nature. Generation may vary from location to location.	

Source- https://solarrooftop.gov.in/rooftop_calculator

SOLAR PANEL DESCRIPTION:

Loom Solar Panel - Shark 445 - Mono Perc, 144 Cells, Half Cut

Technical

wattage (WP)	445 Watts
voltage at Max Power	42 Volts
current at max power	10.5amps
open circuit voltage	49 volts
short circuit current	11 amps
number of cells	144

Descriptions

Brand	Loom Solar
Output Power	445 Watts
Space Requirement	24 sq. feet
Operating Voltage	24 Volt
Panel Technology	Mono Perc
Manufacturer warranty	10 year on manufacturing defects
Performance Warranty	25 Years
Additional Features 1	6th Generation Monocrystalline Solar Cell (PID FREE) from Germany
Additional Features 2	Cell Conversion efficiency > 22%
Additional Features 3	Compliance with IEC standards

APPENDIX C

Water Calculations: WATER CONSUMPTION, WASTEWATER TREATMENT & RAINWATER HARVEST

WATER CONSUMPTION- REDUCE

Water Consumption by using Water Efficient Plumbing Fixtures						
		Baseline	Design Case	Duration	Baseline Flow	Design Case Flow
Water Closet (Full Flush) - Baseline	LPF	6	3	1	1341.00	670.50
Water Closet (Half Flush) - Baseline	LPF	3	1	1	2011.50	670.50
Faucets / Taps - Baseline	LPM	6	3.8	0.15	1609.20	1019.16
Health Faucets - Baseline	LPM	6	3.8	0.15	201.15	127.40
Shower	LPM	10	5.8	8	17880.00	10370.40
Kitchen Sink	LPM	6	3.8	0.15	1206.90	764.37
Total Occupants (including visitors)	Numbers	224				
Occupants - Male	Numbers	112				
Occupants - Female	Numbers	112				
Daily Usage		Men	Women			
Water Closet (Full Flush)	Numbers	1	1			
Water Closet (Half Flush)	Numbers	3	3			
Faucets / Taps	Numbers	8	8			
Health Faucets	Numbers	1	1			
Shower	Numbers	1	1			
Kitchen Sink	Numbers	6	6			
Total Consumption Baseline Flow	Litres/Day	24249.75				
Total Consumption Design Flow	Litres/Day	13622.33				
Total Consumption Design Flow	KL/Year	4972.15				
Total Consumption % savings	%	44				

baseline lpm/lpf -

1. National building code of India 2016- vol 2 part 9 - water supply 4.7.3.3

2. Uniform plumbing code – India, 2016

Table 7: Water consumption reduction by using water-efficient plumbing fixtures.

Irresponsible usage of water and overexploitation of groundwater sources has led to water shortage in Mumbai. Therefore, as per the National building code 2016, Standard fresh **water consumption demand is brought down by 44 %**.

C. RAINWATER HARVEST- RECYCLE

Rain Water Harvesting Roof &	Non R	oof	Stage 02 - Calculation of Rainwater Harvesting Potential					
Stage 01 - Calculation of Daily Rainfall			Title		Number	Run off Coefficient	Pervious Area	
Titles	UoM	Qty	Cemented/ Tiled Roof (terrace)	sqm	367.60	0.95	349	
Peak Month Rainfall, July 2016	mm	926.0						
Peak Month Rainfall, Aug 2017	mm	950.3	motherearth)	sqm	560.00	0.20	112	
Peak Month Rainfall, July 2018	mm	1138.8	Pavement area (Hardscape Area)	sam	561.70	0.95	534	
Peak Month Rainfall, July 2019	mm	1464.8						
Peak Month Rainfall, July 2020	mm	1 502.6	Vehicular road	sqm	0.00	0.95	0	
Total Rainfall in last 5 years	mm	5982.5	Total Site Area	sqm	1489.30		995	
Average Peak Month Rainfall in 5 yea	mm	1196.5	Total Importations grad Boof	sam	347.40		883	
	m	1.1965		sqiii	367.60		000	
One Day Rainfall (3 % of Average Peak Month Rainfall)	m	0.036	Total pervious area Non Roof	sqm	qm 1121.70 112 u.m 35.71		112	
Average Normal One Day Rainfall	m	0.036	Total Rainwater Harvesting Potential onsite per day	Cu.m				

Table 8: Calculating average rainfall & Rainwater harvesting potential on-site.

Stage 1: Data is collected from Customized Rainfall Information System (CRIS), Hydromet Division, IMD for the peak month rainfall in the last 5 years.

Stage 2: Rainwater potential on-site is around **35710 Liters/day** which is recycled by filtering and **27000 Liters/day** of rainwater is stored & reused for domestic purposes like flushing and irrigation.

C. WATER TREATMENT – RECYCLE & REUSE

Daily Out Flow			Rain water harvesting tank	UoM	Number	
Flow from flush fixtures (black water)	3554	1468				
Flow from flow fixtures (grey water)	20696	12154	Length of tank	m	3.00	
Annual Out Flow			Depth of tank	m	1.50	
Annual Flow from fixtures (black water)	1297082	535964				
Annual Flow from fixtures (grey water)	7554077	4436184	Width of tank	m	3.00	
Annual flow from fixtures (black & grey water)	8851159	4972149	Volume of tank	cum	13.50	
Waste water treatment Reuse &	Recycle			00.111	10.00	
			No of tanks	no.s	2.00	
Total Volume of waste water generated	litres/day	13622	Total Volume of PHW Tank	cu m	27.00	
Flow from fluch fixtures (black water)	litros (day)	1449		C0.111	27.00	
	ines/day	1466	Total Rainwater harvesting	%	76%	
Flow from flow fixtures (grey water)	litres/day	12154	executed on site	70	7070	
Capacity of Sewage Treatment Plant	litres/day	12000	Table 9: Calculating Wastew	vater		
Percentage	%	88%	recycled & reused on-site (FFT)		
Efficiency of STP	%	0.95				
Volume of treated waste water available daily	litres/day	11400				
Percentage	%	84%	Table 10: Calculating DUWT	ank		
Available Total Rainwater Harvested onsite	litres/day	27000.00		UNK		
Total Water Recycled onsite in Monsoon days	litres/day	38400.00				
Total Water Reused onsite daily during Dry days	litres/day	11400.00]			

	Vol of	Volum	ne of Water R	eused	Landscape Water Calculation		
Application	water required (Itrs)	Treated Waste Water (Itrs)	Surplus Treated Water in dry season	Surplus Treated Water in monsoon season	Landscape area(sq.m)	560.00	
Flushing	1468	1468			daily water (Itrs/sq.m/day)	1.20	
Landscaping	672	672			Total water daily required (Itrs/day)	672.00	
Total	2140.40	2140.40	9260	36260	Annual Requirement (litres/yr)	161280.00	
Total volume a	of water rec	2140					
Total volum	ne of treate	2140					
Surplus Treate	d water ret	9260					
Surplus Treate	ed water re	turned to th	ne source in	monsoon	36260		

Table 11: Calculating Surplus treated water returned to the municipality.

The main challenge faced in Borivali is the unpredictable water supply systems, they get water for an average of 4 to 6 hours a day. Considering this, we aimed to formulate an integrated water system that is self-sufficient and less dependent on nature. Considering everything, we have proposed the roof of the building and site slopes be a catchment area.

Rainy FL-500 filtration system is used to remove the dirt and impurities with more than 90% efficiency, making **27000 litres/day of harvested rainwater** suitable to use on monsoon days & further redirected for reuse for domestic purposes like irrigation and flushing.

Additionally, the 13622 liters/day outflow of wastewater in form of grey water and black water is treated in a **sewage treatment plant on site making efficient**

11400 litres/day of treated water available for use in flushing and irrigation purposes in dry days.

REFERENCES-

- 1. https://igbc.in/igbc/redirectHtml.htm?redVal=showGreenHomesnosign
- 2. Uniform Plumbing Code India, 2016
- 3. http://www.imd.gov.in
- 4. http://nwm.gov.in/sites/default/files/1.%20National-water-mission-%20%20%20water-use-efficiency.pdf
- 5. https://www.grihaindia.org/sva-griha
- 6. allegianceindia.in/products/rainy-filters-fl-500-/25

APPENDIX D

INPUT OUTPUT PARAMETERS FOR SIMUATION

Input Parameters	Units	Proposed Design Values
General		
Building Area	m²	5131.00 sq.m
Conditioned Area	m²	NA
Electricity Rate	INR/kWh	5.55
Natural Gas Rate	INR/GJ	NA
Building Occupancy Hours	-	24 hours
Average Occupant Density	m² / person	260 /5131 = 0.05
Internal Loads		
Interior Average Lighting Power Density	W/m²	7.5 (as per SvaGriha)
List of Lighting Controls	-	-
Average Equipment Power Density	W/m²	11
Minimum OA Ventilation (Building Average)	l/sec.m ²	1.5
Envelope		
Roof Assembly U value	W/m².K	0.8
Roof Assembly SRI	-	102 (PANACHE COOL TOP ECO)
Average Wall Assembly U value	W/m².K	0.4
Window to Wall Area Ratio (WWR)	%	24.24
Windows U value	W/m².K	1.3
Windows SHGC	-	0.3
Windows VLT	%	60
Infiltration Rate	ac/h	0.70
Describe Exterior Shading Devices	_	Chajja (0.45m), Louvers (6no.s with 0.2m width at 15degree), Side fins (0.3m)

HVAC System		
HVAC System Type and Description	NA	ΝΑ
Describe Mixed mode strategy in operation/controls of AC and windows	-	-
Heating Source	-	-
Heating Capacity	-	-
Heating COP	_	-
Cooling Source	-	-
Cooling Capacity	-	-
Cooling COP	-	1.50
Operation Hours	_	8
Heating Set Point	-	-
Cooling Set Point	-	-
Relative Humidity Setpoint	-	-

Service Hot Water		
SHW Type and Description	-	-

Output Parameters	Units	Proposed Design Values
Proposed EUI (Total)	kWh/m²/ yr	151.48
EUI Breakdown by End Use		
Heating	kWh/m²/ yr	NA
Cooling	kWh/m²/ yr	NA
Fans	kWh/m²/ yr	NA
Pumps	kWh/m²/ yr	0.05
Heat Rejection	kWh/m²/ yr	NA
Service Hot Water	kWh/m²/ yr	NA
Lighting	kWh/m²/ yr	23.26
Equipment	kWh/m²/ yr	17.26
Total Envelope Heat Gain (Peak)	W/m²	-
Cooling Load of Conditioned Area	SF/ Tr	-
Building Electric (Peak)	W/m²	-
Annual Operating Energy Cost	INR/m²	-
Annual Unmet Hours	-	4530
Cooling Capacity	-	NA
Annual Hours of Comfort without Air Conditioning	-	4230

REFERENCES FOR WATER PERFORMANCE CALCULATIONS

- 1. allegianceindia.in/products/rainy-filters-fl-500-/25
- 2. https://igbc.in/igbc/redirectHtml.htm?redVal=showGreenHomesnosign
- 3. Uniform Plumbing Code India, 2016
- 4. http://www.imd.gov.in
- 5. http://nwm.gov.in/sites/default/files/1.%20National-water-mission-%20%20%20water-use-efficiency.pdf
- 6. <u>https://www.grihaindia.org/sva-griha</u>

Program Version: EnergyPlus, Version 9.4.0-217a24fc09, Y

Tabular Output Report in Format: HTML

Building: Building

Environment: RES AT BORIWALI (01-01:31-12) ** Mun

Simulation Timestamp: 2023-04-24 00:04:57

Report: Annual Building Utility Performance Summary

For: Entire Facility

Timestamp: 2023-04-24 00:04:57

Values gathered over 8760.00 hours

Building Area

	Area [m2]
Total Building Area	5099.94
Net Conditioned Building Area	0.00
Unconditioned Building Area	5099.94

Site and Source Energy

	Total Energy [kWh]	Energy Per Tota
Total Site Energy	38160.33	
Net Site Energy	38160.33	
Total Source Energy	120853.76	
Net Source Energy	120853.76	

Comfort and Setpoint Not Met Summary

	Facility [Hours]
Time Setpoint Not Met During Occupied Heating	0.00
Time Setpoint Not Met During Occupied Cooling	0.00
Time Not Comfortable Based on Simple ASHRAE 55-2004	4593.17

APPENDIX E

SUMMARY OF EMBODIED CARBON CALCULATIONS

The building and construction industry is responsible for up to 30% of annual global greenhouse gas (GHG) emissions, placing it among the top seven major contributors to the enhanced global warming effect. The energy use and carbon emissions occur in all different stages of a building's life cycle(A1-A5), which may be defined as in (Figure 1). In another particular categorization, carbon emissions may be divided into two general groups, embodied carbon and operating carbon emissions. The embodied carbon, has been conventionally defined to comprise carbon emissions incurred in stages I to III of the building's life cycle (defined above), althugh it may be extended to include the end-of-life carbon emissions.

CALCULATING EMBODIED CARBON

The most important time to calculate embodied carbon is in the early design stages. It is crucial to have time and scope to make changes in light of your embodied carbon assessment. The most important time to calculate embodied carbon is in the early design stages. The fundamental principle of an embodied carbon calculation is typically to multiply the quantity of each material or product by a carbon factor (normally measured in kgCO₂e per kg of material) for each lifecycle module being considered:

Embodied carbon = quantity × carbon factor

The **quantity** of each material or product is an estimate that improves in accuracy throughout the design process.

The **carbon factors** are split up by lifecycle module, and are estimates that improve in accuracy as more is known about the procurement process for the project.

Figure 5: Different phases of a building's life cycle.

Figure 6: LIFECYCLE STAGES OF CONSTRUCTION Source: thestructuralengineer.org

Reference: Approximate distribution of A1-C4 emissions. Adapted from the LETI Embodied Carbon Primer (ultra low energy residential model, page 19) available at: <u>https://carbon.tips/ecp</u> (last accessed 17 June 2020)

TABLE 2: A1–A3 ECFs for typical structural materials

Material	Туре	Specification/details	A1–A3 ECF (kgCO ₂ e/kg)	Data source
		Unreinforced, C30/37, UK average ready-mixed concrete EPD[1] (35% cement replacement)	0.103	MPA, 2018[2]
		Unreinforced, C32/40, 25% GGBS cement replacement[3]	0.120	ICE V3[4]
		Unreinforced, C32/40, 50% GGBS cement replacement	0.089	ICE V3
	In situ: piling, substructure, superstructure	Unreinforced, C32/40, 75% GGBS cement replacement	0.063	ICE V3
Concrete		Unreinforced, C40/50, 25% GGBS cement replacement	0.138	ICE V3
		Unreinforced, C40/50, 50% GGBS cement replacement	0.102	ICE V3
		Unreinforced, C40/50, 75% GGBS cement replacement	0.072	ICE V3
		Unreinforced, C40/50 with average UK cement mix	0.178	ICE V3
	Precast	Reinforced, 150mm prestressed hollow core slab: British Precast Concrete 50.2kgCO ₂ e/m ² BPCF, 2017 Federation average EPD	BPCF, 2017[5]	
	Reinforcement bars	UK: BRC EPD	0.684	BRC, 2019[6]
		Worldwide: Worldsteel LCI study data, 2018, world average	1.99	ICE V3
	PT strands	Assume the same as reinforcement bars		
Stool		UK open sections: British Steel EPD	2.45	BS, 2020[7]
Steel	Structural sections	Europe (excl. UK): Bauforumstahl[8] average EPD	1.13	Bauforumstahl, 2018
		Worldwide: Worldsteel LCI study data, 2018, world average	1.55	ICE V3
	Galvanised profiled sheet (for decking)	UK: TATA Comflor EPD	2.74	TATA, 2018
Blockwork	Precast concrete blocks	Lightweight blocks	0.28	ICE V3
Brick	Single engineering clay brick	Generic, UK	0.213	ICE V3
	Manufactured structural	CLT, 100% FSC/PEFC	0.437	ICE V3
Timber, excl. carbon	timber	Glulam, 100% FSC/PEFC	0.512	ICE V3
sequestration[9], [10]	Studwork/framing/flooring	Softwood, 100% FSC/PEFC	0.263	ICE V3
	Formwork	Plywood, 100% FSC/PEFC	0.681	ICE V3
Plasterboard	Partitioning/ceilings	Minimum 60% recycled content	0.39	ICE V2
Intumescent paint	For steelwork	Specific EPD: Amotherm steel WB, Amonn	2.31	AMONN, 2019[11]

Data taken from CEC Table 2, and correct at time of publication. Check data sources to verify that data presented here are valid at time of your calculation.

[1] Covers 93% of production from member companies of the British Ready-Mixed Concrete Association.
 [2] MPA, 2018. UK manufactured generic ready-mixed concrete. Produced by members of the British Ready-Mixed Concrete Association (BRMCA), part of the Mineral Products Association (MPA). published by Institut Bauen und Umwelt e.V. (IBU). Available online at https://carbon.tips/mpa1 (last accessed 07/04/2020)
 [3] Note that the ICE V3 database has a wide range of concrete mixes, including PFA (pulverised fuel ash) cements. Additionally, see CEC §2.2.2.1.3 for more information.

[4] Jones and Hammond, 2019.

[5] British Precast Concrete Federation, 2017. Environmental Product Declaration (EPD) report of 1m2 of 150mm precast concrete prestressed hollow core flooring slab. Published by Institut Bauen und Umwelt e.V. (IBU). Available online at: https://carbon.tips/hollow
[6] BRC, 2019. Environmental product declaration (EPD) report of fabricated steel products produced in the UK by Eco-Reinforcement members. Gwent, BRC Limited. Available at https://carbon.tips/brcepd (last accessed 23/02/20)

 [7] BS, 2020. Environmental product declaration (EPD) report of Steel Rails and Sections (including semi-finished long products). Gwent, BRC Limited. Available online at https:// carbon.tips/rails (last accessed 30/04/20)
 [8] bauforumstahl e.V., 2018. Environmental Product Declaration (EPD) report of Structural Steel: Sections and Plates. Published by Institut Bauen und Umwelt e.V. (IBU). Available online at https://carbon.tips/ed6cd (last accessed 13/05/2020) [9] The ICE V3 database also includes timber A1–A3 embodied carbon factors including sequestration.

[10] See CEC §2.2.2.1.5.

111 AMONN, 2019. Environmental Product Declaration, Intumescent Coating, Amotherm Brick WB - Amotherm Concrete WB - Amotherm Gyps WB Amotherm Steel WB -Amotherm Steel WB HI - Amotherm Wood WB. Ponte nelle Alpi, J.F. Amonn Srl. Available online at https://carbon.tips/amonn (last accessed 12/06/20)

Figure 7: Reference for co2 factor of low carbon emitting materials

A. ROOF SYSTEM: -

Base Case- Concrete Roof slab with No Insulation

150mm thick slab, across 322.1m² = 48.3m³

Quantity = Mass of concrete roof slab = $500 \text{kg/m}^3 \times 48.3 \text{ m}^3 = 24.1t$; where t is tonne

Carbon Factor = 0.9t Embodied carbon = 24.1t × 0.9t = 21.69 tco2e

Proposed Case- Green Concrete Roof slab with Stone Wool Insulation For unreinforced, C40/50, 75% cement replacement, carbon factor is 0.072 150mm thick slab, across 322.1m² = 48.3m³ Quantity = Mass of concrete roof slab = 500kg/m³ x 48.3 m³ = 24.1t Carbon Factor = 0.072t(Refer Figure 2) Embodied carbon = 24.1t x 0.072t = 1.73 tco2e Roof Insulation – Stone Wool Insulation (u-value = 0/038w/m²k)

Features of Green Concrete:

Cement production accounts for more than 6% of all CO2 emission which is a major factor in the world global warming (Greenhouse gas). India is the third largest cement producer in the World and one of the largest consumers of cement per capita in the world. Rough figures are that India consumes about 1.2 Ton/year/capita, while as World average is 0.6 Ton/year/capita. There have been a number of efforts about reducing the CO2 emissions from concrete primarily through the use of lower amounts of cement and higher amounts of supplementary cementitious material (SCM) such as fly ash, blast furnace slag etc. CO2 emissions from 1 ton of concrete produced vary between 0.05 to 0.13 tons. 95% of all CO2 emissions from a cubic meter of concrete is from cement manufacturing. It is important to reduce CO2 emissions through the greater use of SCM.

Figure 8: RICESD-2015(Volume 4 - Issue 08)

50mm thick slab across 322.1m² = 0.05 x 322.1 = 16.1 m³ Quantity = Mass of stone wool insulation = 120kg/m³ x 16.1m³ = 1.9t

Embodied carbon = 0.74tco2e

Total carbon emission of Insulated Roof = 1.73t + 1.406t = 3.136tco2e

Note:- Replacing conventional concrete roof slab and adding insulation to it reduces carbon factor by a difference of 19.96tco2e value.

B. WALL SYSTEM: -

Base Case – 230mm thick RCC wall

230mm thick wall across, 53.9m height = 0.23 x 53.9 x 0.115 = 1.42 m³ Quantity = Mass of RCC wall = 1922kg/m³ x 1.42 m³ = 2.7t Carbon Factor = 0.42t Embodied carbon for RCC wall = 2.7t x 0.42t = 1.142tco2e Reinforcement bars; Quantity = 90kg/m³ x 2.97m³ = 0.26t Carbon factor = 1.5t Embodied carbon for reinforcement bars = 0.26t x 1.5t = 0.39tco2e Therefore, total carbon emission for 230mm thick RCC wall

Get Them GREEN

= 1.142t + 0.39t = 1.532tco2e

Figure 9: Thermal value of materials

Proposed Case – 230mm thick AAC block 230mm thick wall across, 53.9m height = 0.23 x 53.9 x 0.24 $= 2.97 \text{ m}^3$ Quantity = Mass of AAC block per cubic meter = 14kg/m³ x 2.97 m³ = 0.041tCarbon Factor = 5.2t - 5.9t**Embodied carbon for AAC wall =** $0.0411 \times 5.21 = 0.21321$ co2e Reinforcement bars; Quantity = 90kg/m³ x 2.97m³ = 0.26t Carbon factor = 1.5t**Embodied carbon for reinforcement bars =** 0.26t x 1.5t = 0.39tco2e Therefore, total carbon emission for 230mm thick AAC wall = 0.21321 + 0.391= 0.61co2e C. WINDOW SYSTEM: -Base Case – Triple Wooden glazed window (6mm thick window glass + 28mm thick window frame) 34mm thick window across $4m^2 = 0.34 \times 4$ = 1.36 m³ **Quantity =** Mass of window and window frame = $30 \text{kg/m}^3 \text{x} 1.36 \text{ m}^3$ = 0.04t Carbon Factor = 0.052t Embodied carbon for triple wooden glazing= $0.041 \times 0.0521 = 0.0021$ co2e Proposed Case – Double wooden glazing window (4mm thick window glass + 10mm thick window frame) 14mm thick window across $4m^2 = 0.14 \times 4$ $= 0.56 \text{ m}^3$ Quantity = Mass of window and window frame = 20kg/m³ x 0.56 m³ = 0.0112t1

Carbon Factor = 0.04t Embodied carbon for triple wooden glazing= 0.0112t × 0.04t = 0.0004tco2e

D. FLOORING SYSTEM: -

Base Case- RCC Flooring

150mm thick slab across 367.20 m² = 0.15m x 367.2 m² = 55.08 m³ Quantity = Mass of RCC slab per cubic meter = 500kg/m³ x 55.08 m³ = 27.54t Carbon factor = 0.9t Embodied Carbon = 27.54t x 0.9t = 24.78tco2e Proposed Case- Green Concrete Roof slab For unreinforced, C40/50, 75% cement replacement, carbon factor is 0.072 150mm thick slab, across 322.1m² = 48.3m³

Quantity = Mass of concrete roof slab = 500kg/m³ x 48.3 m³ = 24.1t

Carbon Factor = 0.072t

Embodied carbon = $24.11 \times 0.0721 = 1.73 \text{ tco2e}$

APPENDIX F

CROSS VENTILATION CALCULATIONS:

CROSS VENTILATION CALCULATIONS

BEDROOM:

- A. Occupancy:
 - Location: Bedroom
 - No. of occupants: 2 persons
 - Activity: Seated at rest, Light.
 - Sensible heat gain: 66 to 12 watts-69 watts
 - Latent heat gain: 31 to 45 watts
 - Sensible Heat Gain for 2 persons: 2 X 69= 138 watt
 - Heat Gain per person: 69 watts
 - B. As per graph, 4 B.T.U 14 W/m² occupant Heat Gain
 - Internal Heat gain
 - Electric Lighting
 - Simple orientation for short= Medium= 75 (Lux)
 - Stay: Lighting Heat gain= 27 w/m² = 7 B.T.U

C. Equipment's:

Heat gain from equipment High= 6 w/m²

D. Solar Heat Gain

- As per our radiation chart for the west surface, we will consider the solar heat gain for the month of May which is 143 w/sq.m
- Glass:143 X 0.71 X0.5
- Curtain 0.5
 - : 50.76 w/m^2
 - E. Total Heat Gain:

= occupancy + Electric + equipment's + Solar heat gain

=14+27+6+50.76

=**97.76**w/m²

Size of Room= 4.05 X 3.15

= 12.75 m²

Total area of opening = 8 sq.m for bedroom

F. Window Sizes:

Inlet area/ 12.75X 100 %=8 x/12.75 X 100= 8

=1.2 m²

LIVING ROOM:

A. Occupancy:

- Location: Living Room
- No. of occupants: 6 person
- Activity: Seated at rest, Light.
- Sensible heat gain: 66 to 12 watts- 69 watts
- Latent heat gain: 31 to 45 watts
- Sensible Heat Gain for 6 person: 6X 69= 414 watt
- Heat Gain per person: 69 watts

B. As per graph, 13 B.T.U 39 W/m² occupant Heat Gain

- Internal Heat gain
- Electric Lighting
- Medium= 110 (Lux)
- Visual task, High contrast lighting of large size= $27 \text{ w/m}^2 = 7 \text{ B.T.U}$

C. Equipment's:

Heat gain from equipment Residential= 6 w/m²

D. Solar Heat Gain

- As per our radiation chart for the west surface, we will consider the solar heat gain for the month of May which is 143 w/sq.m
- Glass:143X 0.71 X0.5

:50.76 w/m²

E. Total Heat Gain:

=39+35+6+50.76 =130.76w/m² Size of Room=3.95 X 5.45 = 21.52 m² Total area of opening = 12 sq.m for living F. Window Sizes: Inlet area/ Floor X 100 %=12 x/21.52X 100= 12 x=2.58 m

= occupancy + Electric + equipment's + Solar heat gain

KITCHEN:

- A. Occupancy:
 - Location: Bedroom
 - No. of occupants: 2 person
 - Activity: Seated at rest, Light.
 - Sensible heat gain: 66 to 12 watts-69 watts
 - Latent heat gain: 31 to 45 watts
 - Sensible Heat Gain for 2 person: 2 X 69= 138 watt
 - Heat Gain per person: 69 watts
- B. As per graph, 4 B.T.U 14 W/m² occupant Heat Gain
 - Internal Heat gain
 - Electric Lighting
 - Simple orientation for short= Medium= 75 (Lux)
 - Stay: Lighting Heat gain= 27 w/m² = 7 B.T.U

C. Equipment's:

Heat gain from equipment High= 6 w/m²

D. Solar Heat Gain

- As per our radiation chart for the east surface, we will consider the solar heat gain for the month of May which is 143 w/sq.m
- Glass:143 X 0.71 X0.5
- Curtain 0.5: 50.76 w/m²

E. Total Heat Gain:

- = occupancy + Electric + equipment's + Solar heat gain
- =14+27+6+50.76

=**97.76**w/m²

Size of Room= $2.7 \times 2.5 = 6.75 \text{ m}^2$

Total area of opening = 6 sq.m for Kitchen

F. Window Sizes:

Inlet area/ Floor X 100 %=6

x/6.75 X 100= 6 =**0.405 m**²

REFERENCES

- 1. <u>https://assets.publishing.service.gov.uk/government/uploads/systemuploads/att</u> <u>achment_data/file/461120/3a_So_cial_isolation-Full-revised.pdf</u>
- 2. https://www.ashrae.org/resourcespublications/free-resources/10-tips-for-homeindoor-air-quality/
- 3. <u>https://healthyhomesbuildings.org.uk/</u>
- 4. <u>https://www.ukgbc.org/ukgbc-work/health-wellbeing-homes/</u>
- https://www.ukgbc.org/sites/default/files/08453%20UKGBC%20Healthy%20Homes % 20Updated%2015%20Aug%20%28spreads%29.pdf
- 6. https://www.wellcertified.com/
- 7. https://www.bregroup.com/services/research/the-biophilic-office/
- 8. <u>https://www.scambs.gov.uk/planning/local-plan-and</u> <u>neighbourhoodplanning/health-impact-assessment-spd/</u>

D Y PATIL SCHOOL OF ARCHITECTURE D Y Patil Knowledge City, Charoli Bk, Lohegaon, Pune-412 105

Ref. No: DYPSOA/Admin/BC/2022-23/9154

DATE: 22/02/2023

BONAFIDE CERTIFICATE

This is to certify that the students mentioned in attached list are the bonafide students of D Y Patil School of Architecture Lohegaon Pune.

List of students.

.

1	Aayushi Sunil Khond	Second Year M Arch
2	Amit Ashok Shirke	Second Year M Arch
3	Akanksha Suman	Second Year M Arch
4	Altamash Mushir Khan	Second Year M Arch
5	Kajal Vilas Banekar	Second Year M Arch
6	Kalpita Sanjay Petkar	Second Year M Arch
7	Siddhi Rahul Mirwankar	Second Year M Arch

These students have been allowed to participate in Solar Decathlon Competition.

SHUBHADA N co-PERCIPAL INFO-4051 remo 42950 (Automotion of Standard Berley Automotion) remo 42950 (Automotion of Automotion) remo 42950 (Automotion of Automotion) remo 42950 (Automotion) remo 42050 (A KEDAR da400786473cblattetd70ca 9712 H 07057 - 3336 d 4 607 884 Caboy 7 d de 10 24 60 7 884 R204 R 01 47 5 40 Date 3033 8 33 13 14 37 + 10 10 CHAPEKAR (Prof. Shubhada Chapekar) icipal Principal lical of Architecture V. Fail Court of Antheotire V. Fail Group of Institutions I. V. Patt Knowledge City and TSN, Via Lobogson Court of 12 105

School of Engineering

No. ADYPU/ SOE / HOD / 2022 / L / 346

Date: 29/09/2022

To whom soever it may concern

This is to certify that, **Mr. Darshan Sanjay Verma** is the student of 3rd year B. Tech CTIS at School of Engineering, Ajeenkya DY Patil University, Lohegaon. He is allowed to attend course by Solar Decathlon India. Institute has no objection on his participation. This Bonafide certificate is issued upon his own request.

Dr. Biswajeet Champaty

Head- School of Engineering

Ajeenkya DY Patil University Charholi, Budruk, via Lohegaon, Rune - 412105

www.adypu.edu.in 020-6707-7939

60

Samuchit Enviro Tech GST Reg No.: 27AGWPK4777A2ZY 6, Ekta Park, Law College Road, Pune 411 004. Ph: 020 25460138, Email: samuchit@samuchit.com Website: www.samuchit.com

Date: 20.01.2023

To, The Director, Solar Decathlon India

Dear Sir,

This is to inform you that our organisation, Samuchit Enviro Tech, Pune, is collaborating with the participating team led by Dr. D. Y. Patil School of Architecture on a Multifamily Housing Building Project for their Solar Decathlon India 2022-23 competition entry.

The nature of our collaboration with team GET THEM GREEN as Sustainability Consultant has been on assisting them with the Embodied Carbon Emission Strategy of the Building Project.

We would like to have a representative from our organization attend the Design Challenge Finals event in April/May, if this team is selected for the Finals.

We would like our organisation's logo to be displayed on the Solar Decathlon India website, recognising us as one of the Industry Partners for the 2022-23 competition.

With warm regards,

Pournima Agarkar Sustainability Consultant Samuchit Enviro Tech Email: <u>pournima@samuchit.com</u> Phone: 9823203073

