Team Synergy - Multifamily Housing

Final Design Report – April 2023

SIR J.J. COLLEGE OF ARCHITECTURE, MUMBAI

mahindra LIFESPACES

SDI SIRJJCOA SYNERGY

Contents

Sr no	Title
i	List of Tables
ii	List of Figures
iii	Response to Reviewer's Comment
iv	Team Introduction
V	Executive Summary
vi	Project Background
Vii	Goals
DESIGI	N DOCUMENTATION
1	Energy Performance
2	Water Performance
3	Embodied Carbon
4	Resilience
5	Engineering and Operations
6	Architectural Design
7	Affordability
8	Innovation
9	Health and Wellbeing
10	Value Proposition
11	Appendix

SDI SIRJJCOA SYNERGY

List of Tables

Sr.no.	Title
Т.1	Annual Energy Reduction Analysis with Coolant KINETIC
Т.2	Water use case
Т.З	NBC fixtures flow rates
Т.4	IGBC fixtures flow rates
Т.5	Conventional water usage
Т.6	Reduced case by using Earthfokus fixtures
Т.7	Area specifications of project
Т.8	Rainwater harvesting Potential
Т.9	Holding capacity of Borewell
Т.10	Holding capacity of recharge pits
Т.11	Holding capacity of 3BW in cu.m.
T.12	Embodied Energy of prefabricated and conventional building
Т.1З	Calculation of total number of occupants
T.14	Waste generation by type based on waste generation Factors and its treatment method
T.15	Load calculations
Т.16	Load calculation per day per floor
T.17	Suggestive appliances to reduce demand loads
T.18	Energy efficient lighting reducing demand loads
T.19	Electrical load calculation per day per floor
Т.20	Summary of Embodied Carbon emissions per functional units for building systems
T.21	Effective catchment area
Т.22	Water Usage
Т.23	Gray water filter efficiency
T.24	Percentage of gray water and black water
T.25	Harvesting Rainwater calculations
Т.26	Annual water requirement

SDI SIRJJCOA SYNERGY

List of Figures

Sr.no.	Title
1	Evolutionary adaption of the roles of a house
2	Three fold design interventions at Interior, Building and Urban scale
3	Coolant KINETIC, natural air conditioner in collaboration with AntStudio
4	Net zero energy goal
1.1	Step-by-step EPI reduction
1.2	Experimenting on massing options through CFD simulations run on Design Builder
1.3	Roofing assembly
1.4	Glass used for windows
1.5	Agrocrete + Insulmix used for wall assembly
1.6	Annual Energy Reduction Analysis with Coolant KINETIC
1.7	Sun path diagram of Pimpri
1.8	Radiation range of Pimpri
1.9	Comparison of G2V solar solar system with other systems
1.10	Wind chart diagram of Pimpri
1.11	Combined roofs to maximize area for renewable energy generation
1.12	Optimization for a) Plug Load Efficiency, b)Daylighting and Occupancy Controls, c) Lighting Efficiency, d) HVAC
2.1	Net zero water cycle
2.2	Water use case graph
2.3	Earthfocus Ecostream diamond specifications
2.4	Water Usage Pattern
2.5	Rainwater Harvesting
2.6	Recharge borewell
2.7	Recharge pits details
2.8	ECOSTP
2.9	Borewell, Recharge pits and ECSTOP location on site
3.1	Walls account for 52% of embodied emissions in construction
3.2	Terracotta as a coolant
4.1	Loomo Delivery Ambiator by Segway Robotics
4.2	Waste Collection Locations
4.3	Pie chart indicating waste distribution
4.4	Pie chart indicating types of waste
4.5	Composting process
4.6	Biogas & Manure generation process
4.7	Waste Ecosystem
5.1	Wall to slab connection :Section

5.2	Wall to wall connection: Plan
5.3	Wall to Int. wall connection: Section
5.4	Cementitious waterproofing membrane
5.5	Ambiator ducting for a 2bhk unit
7.1	Initial sketches conceptualizing the spatial form
7.2	Master plan

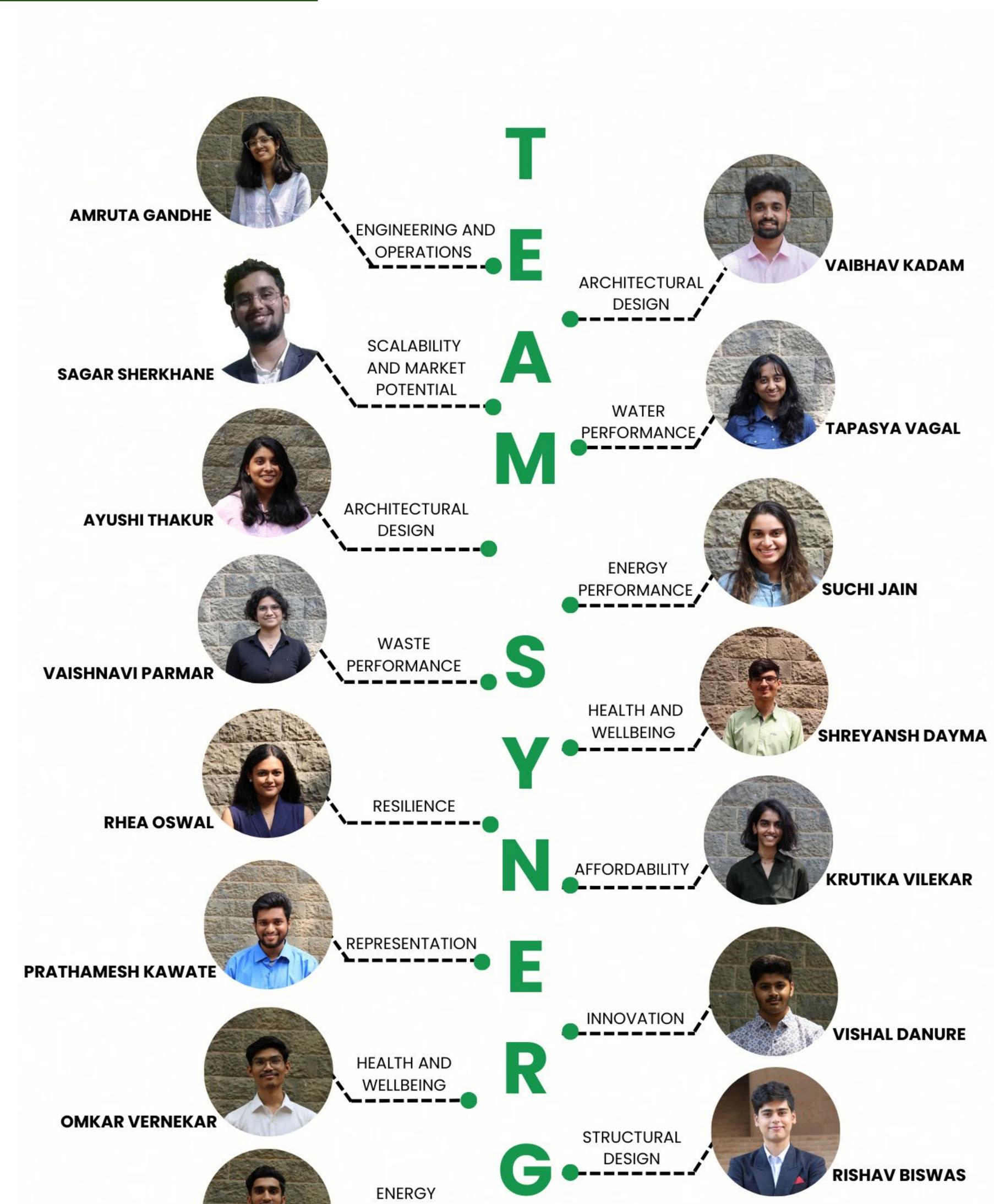
List of Figures

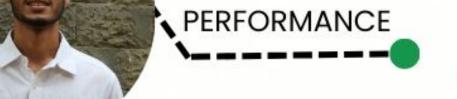
Sr.no.	Title
10.1	Terracotta Sliding folding panels
10.2	Module working
10.3	Terracotta System
11.1	ASHRAE 55 Comfort Distribution for Annual Daytime Hours in Pune - With suggestive operations annotated
11.2	Graph showing comfort temperatures achieved using Coolant KINETIC
11.3	Warm air cooled and purified as it passes through the Coolant KINETIC panels
11.4	Schematic representation of air flow through Ambiator
11.5	Psychometric chart showing operative temperature without Ambiator air conditioning
11.6	Psychometric chart showing operative temperature with Ambiator air conditioning

SDI SIRJJCOA SYNERGY

Response to reviewers comments

Section	Reviewer's Comment	Our Response
Energy Performance	 Reviewer 1 - Details about energy simulation for baseline EPI calculation, and also the schedules that your team has considered for the building, will help put across your thoughts more clearly. Reviewer 2 - The data collected is good. the data needs narratives for better understanding 	 We have included step-by-step procedure and calculations of the EPI numbers obtained in our design.
Water Performance	 Reviewer 1 - For the next stage, try to accommodate these services in your site, with realistic area depiction, along with rainwater storage tanks. Reviewer 2 - Worked out well 	 We have demarcated the location and specifications of the water tanks. We have relooked at our goal for EPI by referring to ECBC norms. We have mentioned ways for on-site renewable energy generation
Embodied Carbon	 Reviewer 1 - Elaborate on materials/ strategies to reduce embodied carbon in the rest of the building systems, as well. Reviewer 2 - Worked out well 	Addressed
Resilience	 Reviewer 1 - Your team has listed earthquakes and waterlogging as potential risks for your project, and tried to address them with design solutions. Also identifying solid waste management and mobility as PCMS's chronic stresses, and proposing design solutions in the form of waste management systems/ electric bikes, is commendable and shows the depth of your study. Reviewer 2 - Worked out well 	
Engineering and Operations	 Reviewer 1 - Space provision and architectural integration of all the other systems, like HVAC, water, electrical and SWM is also expected at this stage. Going further, demonstrate the right-sizing of these systems with drawings and narrative. Reviewer 2 - Worked out well 	 We have included space allocation diagrams for all services along with the specifications of the products used in the design
Architectural Design	 Reviewer 1 - You have done good development of the architectural concept, and demonstrated how the decisions have been made. Concept development, initial form and massing analysis, floor plans, site plans and 3d drawings are comprehensive. Reviewer 2 - Quite clear 	 We have thought a step further about our approach to the design. Intergration of the needs of the future dwellers is focused. We have included detailed plans and model of the structure.
Affordability	 Reviewer 1 - The strategies for cost reduction need to be elaborated. Reviewer 2 - Give the understanding and workability of the materials and construction techniques used 	




Response to reviewers comments

Section	Reviewer's Comment	Our Response
Innovation	 Reviewer 1 - You may want to put your efforts in identifying a problem from the design and infrastructure area, and then present an innovative solution for that. You could also explore the Piezoelectricity or biomass energy generation, for feasibility in your project. Reviewer 2 - Good thinking of using a mobile app. Worked out well 	We have partnered with CoolAnt Studios to come up with a Terracota aerofoil panel for the facade system that will cool the air passing through it and reduce the indoor temperature.
Health & Well-being	 Reviewer 1 - Building-level strategies to provide thermal comfort and good indoor environmental quality are not elaborated. Annual simulations demonstrating thermal comfort are expected at this stage. Reviewer 2 - Worked out well 	 We have elborated on the health and well-being aspect of the design through our integrated solution for architectural design and innovation.
Value Proposition	 Reviewer 1 – Elaborate how the project partner will benefit from the net-zero energy-and-water project that you have proposed. A compelling narrative for the project partner is expected at this stage. 	
Engineering and Operations	 Reviewer 1 - Space provision and architectural integration of all the other systems, like HVAC, water, electrical and SWM is also expected at this stage. Going further, demonstrate the right-sizing of these systems with drawings and narrative. 	 We have included space allocation diagrams for all services along with the specifications of the products used in the design
Additional comments	 Reviewer 1 - Pay more attention to formatting and correct syntax. Ensure legibility of all drawings/charts and particularly text therein. Reviewer 2 - Please make sure that the data that you use for study is not just copy-pasted 	 We have tried formatted the document to make it more readable and understandable. We have included list of tables and figures

SDI SIRJJCOA SYNERGY

Team Introduction

SAHIL DHATRAK

Team Introduction

ABOUT THE TEAM:

We intend to explore the concept of net zero energy with a futuristic outlook. Looking for practical solutions and bringing new ideas to the table to make a difference. The team has been brought together by the common desire to design energy-efficient structures based on the different skills of the students from not just Architecture backgrounds but as well as from different engineering backgrounds as mentioned in the team list adopting a multidisciplinary approach. Our team aims to win as it is not only driven by students who are passionate but also keen on creating a sustainable environment.

BACKGROUND OF LEAD INSTITUTION:

Sir J.J. College of Architecture is a 109-year-old institution and Asia's first school to teach architecture, with a heritage campus in the heart of Mumbai. The institution has imparted in us, the thirst to find solutions that will make an impact in the longer run on as to how we can contribute back to the earth by taking up a challenge that is as complicated as the design and construction industry

FACULTY LEAD AND ADVISORS:

Dr. Rekha Nair

Ph.D. (Arch.), Masters (Urban Planning) Assistant Professor

15+yrs teaching in various disciplines.

- Expert in Climate change Vulnerability studies, Town Planning, and Architectural Design.
- Member of Board of Studies, University of Mumbai
- Reviewer of Elsevier and Springer Journals
- Researcher in sustainable architecture and urbanism, climate change impact, and adaptation studies in urban/ rural contexts with a focus on infrastructure, Exploring Culture and Architecture.

INDUSTRY PARTNERS :

ProEarth

Being Earth Conscious

SDI SIRJJCOA SYNERGY

Executive Summary

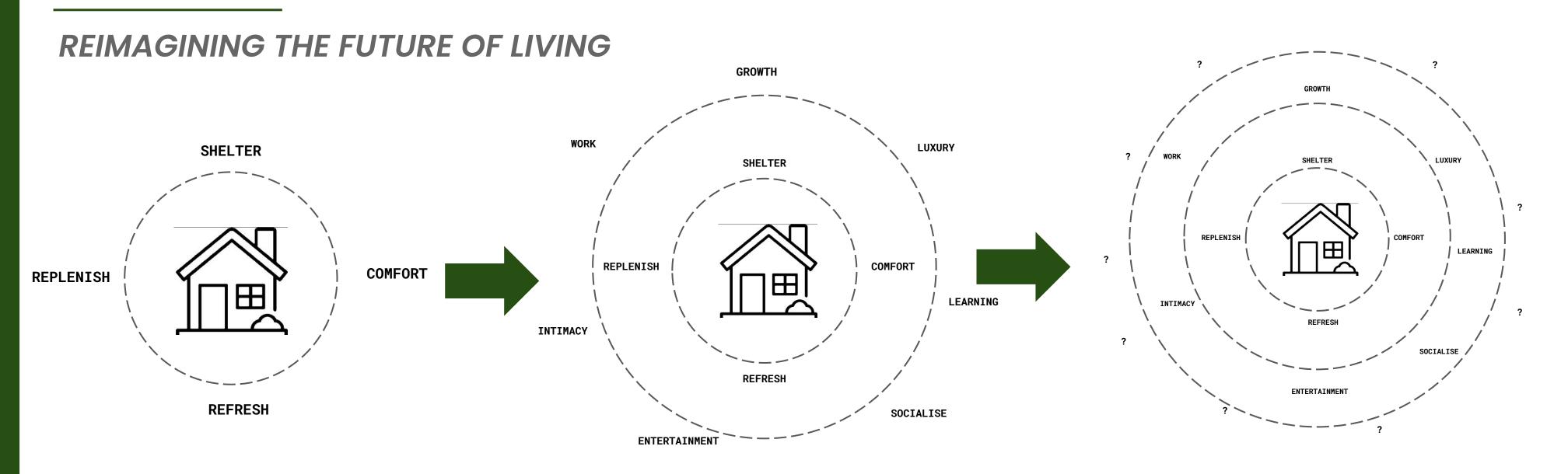


Figure 1: Evolutionary adaption of the roles of a house

What we aim for -

A house serves many roles in our lives. Over the ages, through technological advancements, these roles have expanded further. While the current housing schemes cater to the primitive roles, how can we reimagine these roles in the future. However, we cannot predict what the future holds and that brings about uncertainty in the definition. And so the key factors we should keep in mind should be-

- Flexibility and freedom of choice
- A connect back to our roots and to nature; that has been last with globalisation
- To have a symbiotic relationship with our environment
- To account for net-zero goals while keeping socio-cultural sustainability at a forefront

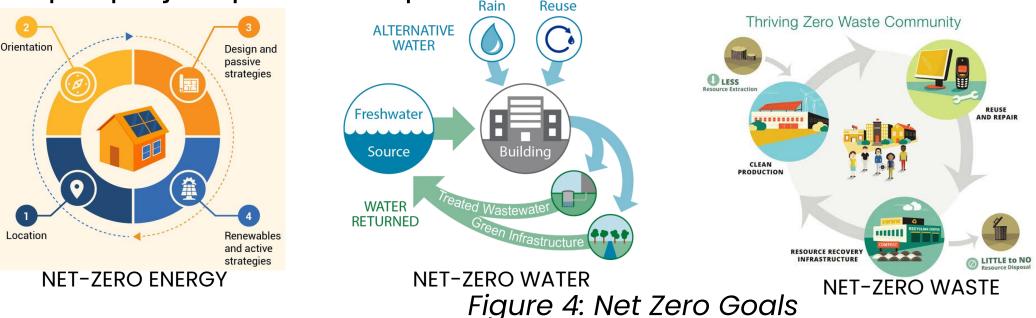
How we achieve this -

UNITS CREATED AS FLEXIBLE MODULES WITH OPEN FLOOR PLATES GIVING CHOICE TO USERS TO DESIGN INTERIOR WALLS BUILDING FORM STAGGERED AND CURVED TO HARNESS WIND. GREEN SPACES INTERSPERSED THROUGHOUT. CONCEPT OF 'URBAN LIVING ROOM' IMPLEMENTED IN THE COMMERCIAL PLAZA PLACED AT THE ROAD LEVEL

Figure 2: Three fold design interventions at Interior, Building and Urban scale

• Innovating with nature-

The design of aerofoils is inspired by the leaves to form a 'second skin' on an existing building facade made with an assembly of terracotta modules. Water is circulated through this system which cools the passing air through the principle of evaporative cooling.


Assembled together to form a system that employs evaporative cooling and provides **shade and insulation**.

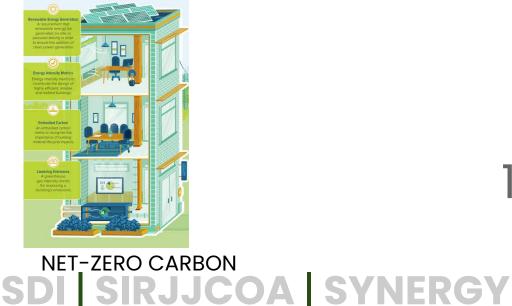


Figure 3: Coolant KINETIC, natural air conditioner in collaboration with AntStudio

Net-zero achievements-

Net-zero goals are achieved in energy, water and carbon as well as a special emphasis of 100% waste diversion from landfills as per project partner requirements.

Project Background

Project name: Mahindra Homeground (Nestalgia)

Project partner:

Mahindra Lifespace Developers Ltd. is an Indian real estate and infrastructure development company headquartered in Mumbai, India. The company is engaged in residential developments under the Mahindra Lifespaces and Happiness brands and integrated cities and industrial clusters under the 'Mahindra World City' and 'ORIGINS' by Mahindra World City brands.

Key people:

- Dr. Sunita Purushottam (Head of Sustainability at Mahindra Lifespace Developers) •
- Mahesh Kanak •

The Board of Directors of the company is headed by Arun Nanda, chairman of Mahindra Lifespace Developers Ltd and Mahindra Holidays & Resorts (I) Ltd. Other members of the Board of Directors include Arvind Subramaniam, Anish Shah and Ameet Hariani, Bharat D. Shah and Amrita Verma Chowdhury hold the position of independent directors.

Brief description of the project:

- Project type: Mid-premium multifamily residential project.
- Location: Pimpri, Pune.
- Climate Zone: Warm and humid zone as per ECBC-2017.
- Status of the project: Foundation construction started.
- Type of building: Mixed use residential towers (2 and 3 BHK. The project consists of 4 residential towers with a G+4 Podium for parking + 23 habitable floors As well as commercial spaces on two floors of two towers
- Number of dwelling units: 498.
- Profile of occupants: The migrants working for various industries like IT, Electronics, Education, Pharma, etc. in Pimpri.
- Amenities: Elder's park, Burma Bridge, Playscape, Barefoot park, Swimming pool, Koi pond, Foot Chi, Brainbench, Kids play pool.
- Concept Biophillia

Estimated total built-up area:

Total Site Area = 12613.49 sq.m. Amenity space: 1256.24 sq.m. Recreational space: 1130.62 sq.m. Permissible built-up Area = 19999.14 sq.m.

Target Energy Performance Index (EPI):

35 kWh/sq.m. (According to the ECBC norms for 2 and 3 bhk residential projects)

Goals

ENERGY PERFORMANCE:

Goal:

To attain EPI < 35 kWh/yr/m2

Strategy:

- Massing optimization to attain most from renewable sources of energy. Orientation of built form, shading, massing and materiality.
- Envelope optimization to make the building thermally comfortable
- Usage Energy Efficient Appliances. Use efficient equipment for lighting, equipment and other services.
- Use of Aerofoil technology based terracota panels
- Sensory trackers within entrance spaces and jogging tracks. Use of piezotiles to generate energy by the footfall of people.

WASTE MANAGEMENT:

Goal:

To generate 40000 litre biogas from wet waste production kg/day and generate revenue from MRF for Dry waste.

Strategy:

- Using techniques like MRF, compositing and biogas generation which helps with building autonomy and revenue generation.
- Efficient house keeping system infused with app to encourage people towards better waste management and minimize product of waste.
- To create a efficient and stable waste management and segregation system so the further process becomes simpler.
- Research and approach the various startups from Pune and Mumbai who cater to the waste to and recycle it.

WATER MANAGEMENT:

Goal:

Target per capita water consumption: 70 LPD.

Strategy:

- Using recharge borewells
- Using water-efficient fixtures and appliances, irrigation equipment, sustainable landscape design solutions, enhanced operation and maintenance of water systems.
- Reducing the storm water runoff by installing rain gardens, permeable pavements, green roofs, infiltration planters, rainwater harvesting systems, etc so that it. can help storm water to infiltrate the original water source.

12

SDI SIRJJCOA SYNERGY

• Water sub-metering and smart water metres for apartments.

Goals

AFFORDABILITY:

Goal:

Invest more in capital expenses to significantly bring down operational cost.

Strategy:

Using prefabricated construction technology to ease the time spent on the construction of the project and lower the financial cost.

RESILIENCE:

Goal:

Implement efficiency in material design to avoid the consistent and intense wind and rain.

Strategy:

- Inclusion of biowales
- Strategies to attain resilience to sesmic waves
- Rainwater harvesting and recharge systems that capture water on the roofs of buildings which can be stored during emergencies.
- Use of micromobility services
- Ensuring the waste is recycled in reused in a cyclic manner
- Ensuring social resilience by improving the safety and security of the residents

INNOVATION:

Goal:

To find a solution that is easy to implement and can be used in daily life without hindrance.

Strategy:

- Proposal of an post occupancy mobile app to minimise energy consumption, manage waste, conserve water at the residents level by creating a tracking software or app.
- Monitor in real-time building's operations and performance.

HEALTH AND WELLBEING :

Goal:

Ensure socio-cultural sustainability by incorporation of a system to get the community closer to each other.

- Maximizing the community spaces within the structure by linking towers to each other increasing the connectivity na ease of traverse.
- We believe, when designed carefully, communal spaces have the potential to influence each wellness dimension and improve life within the space.

13

SDI SIRJJCOA SYNERGY

• Use of Terracotta aerofoil panels to ensure good quility air inside the house.

Goals

ENGINEERING AND OPERATIONS :

Goal:

Integrate Engineering systems with Architectural Design for optimum long term building performance.

Strategy:

- Adapting for modular construction or machine learning and construction through artificial intelligence
- Use of Ambiator technology developed by our project partner which is an energy efficient VRF system
- Sensor based automation systems.
- Use of faster and advanced construction methods that will ensure financial gain for the partner

ARCHITECTURAL DESIGN:

Goal:

To reimagine the future of housing and taking biophilia (original concept of the building) a step further.

Strategy:

- Catering to the unique needs of the next gen buyers and giving them the freedom to personalize their home.
- Taking biophilia a step further and exploring it in terms of form and function
- Increasing the interaction spaces and ensuring socio cultural sustainability.
- The orientation of each block done in a way to increase the energy efficiency of the buildings.

14

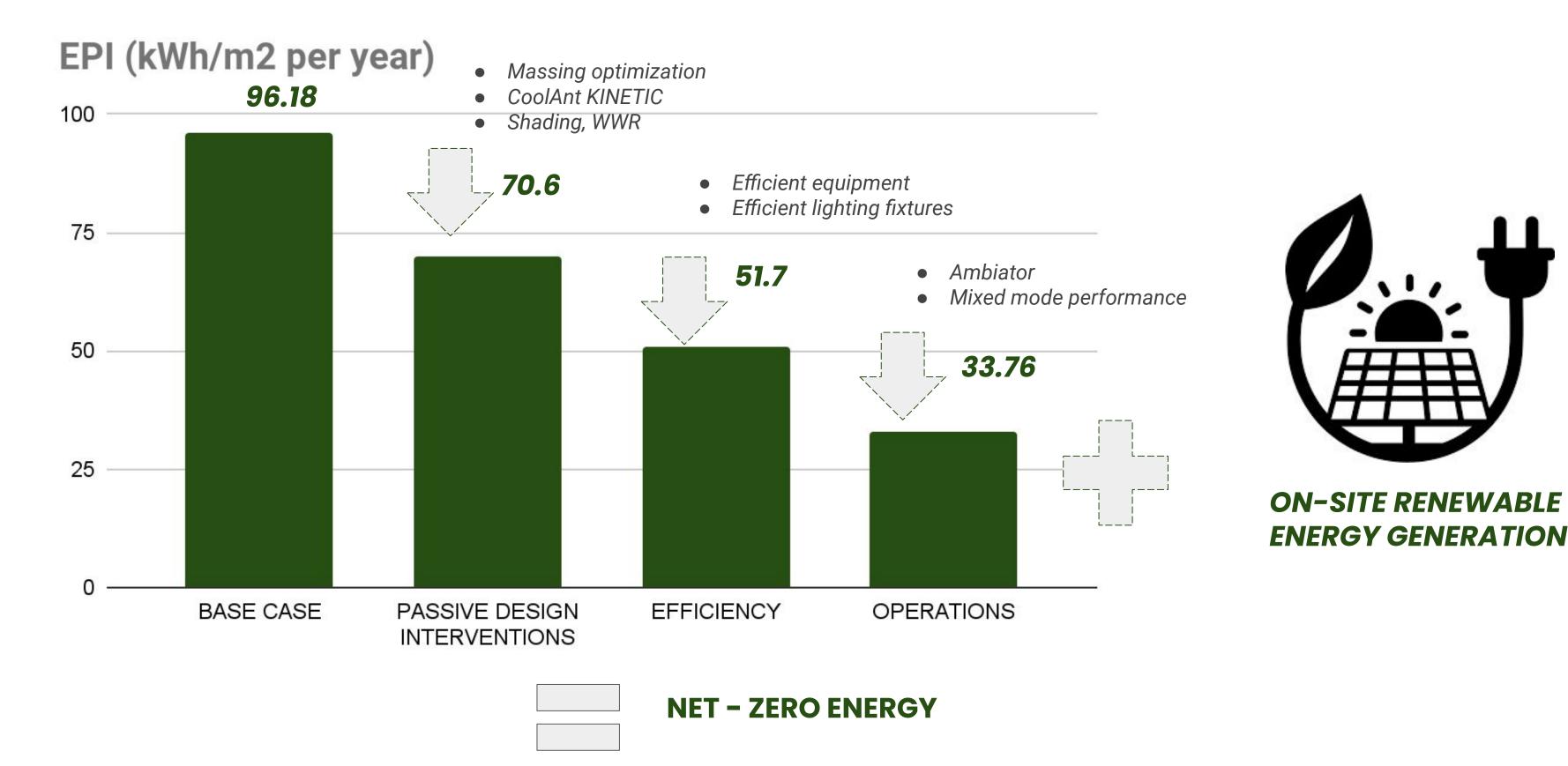
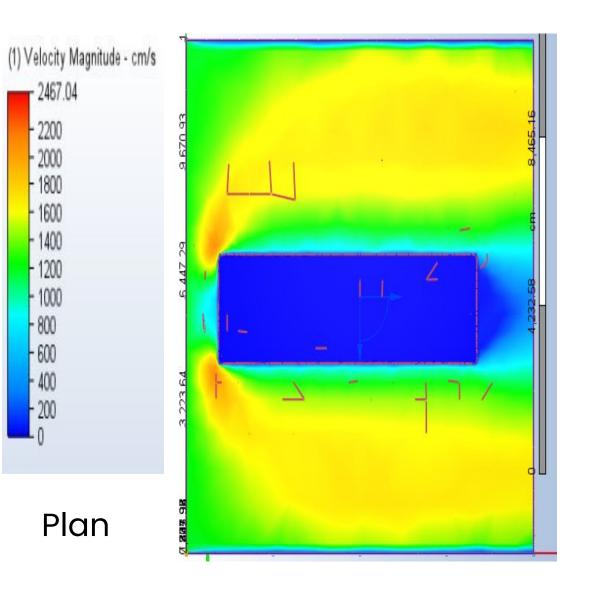
SDI SIRJJCOA SYNERGY

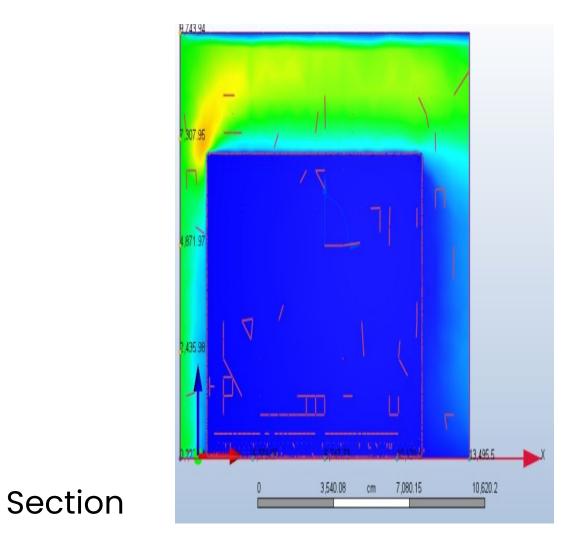
Design Documentation

15

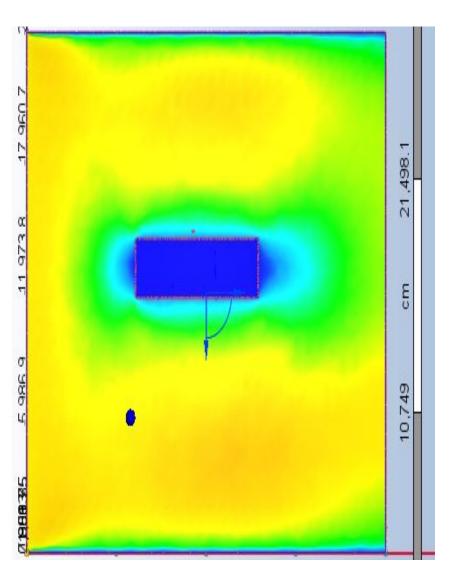
SDI SIRJJCOA SYNERGY

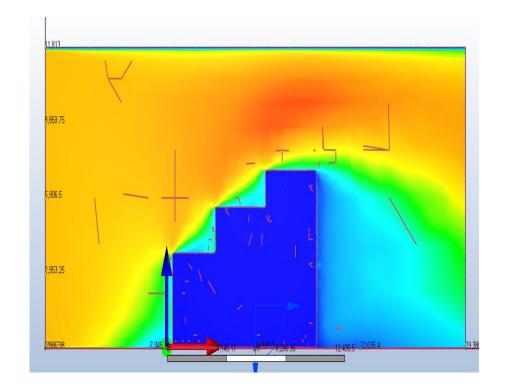
Energy Performance

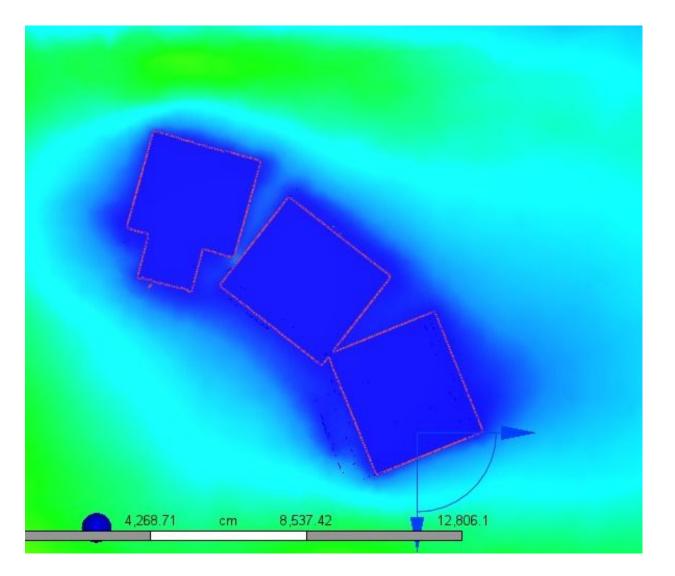



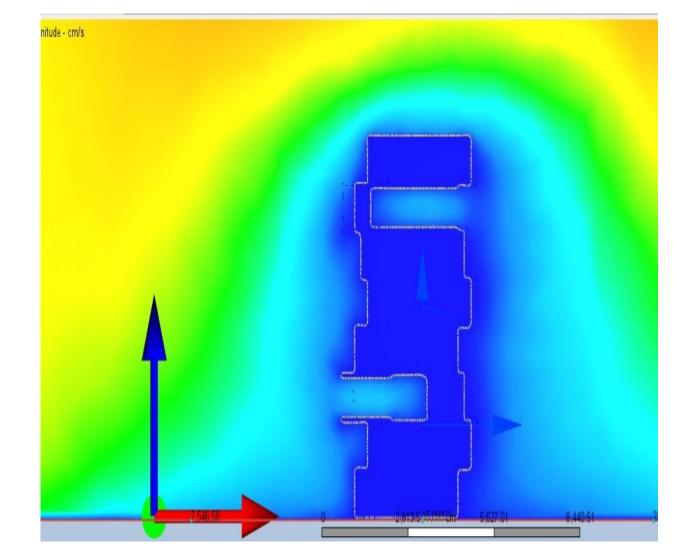

Figure 1.1: Step-by-step EPI reduction

(Note: Base Case Calculations elaborated in appendix.)


MASSING OPTIMIZATION






Iteration 2

Iteration 3

Linear with longer facades North-South oriented

Linear with longer facades North-South oriented and heights staggered

Curving and adding voids

Figure 1.2 : Experimenting on massing options through CFD simulations run on Design Builder

SDI SIRJJCOA SYNERGY

ENVELOPE OPTIMIZATION

• ROOF

- Concrete, Medium density (2000) (150 mm) 1.
- Concrete screed (50 mm) 2.
- 3. Polyethylene/polythene, low density 0.15 mm (0.15 mm)
- 4. HARDROCK® Multi-Fix (DD) (150 mm)
- Ethylene propylene diene monomer [EPDM] 5. (1.8 mm)

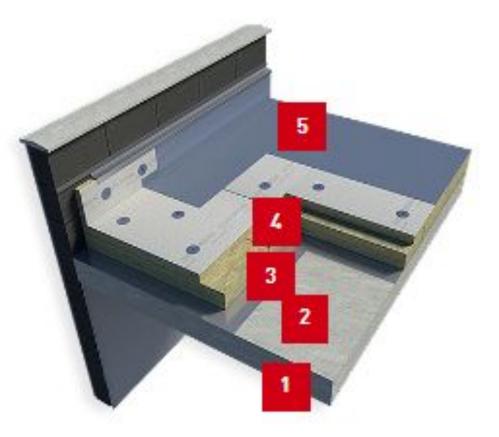


Figure 1.3 : Roofing assembly

U-value = 0.25 W/m2/K

FENESTRATION

AIS Ecosense Essence – Performance Parameters

6 mm (Low-E Glass) -	- 12 mm (Air Gap)) – 6 mm (Clear Glass)
----------------------	-------------------	------------------------

Clear Essence Plus	Neutral	71	10	12	53	0.61	1.8
--------------------	---------	----	----	----	----	------	-----

Figure 1.4 : Glass used for windows

U-value = 1.8 W/m2/K

WALLS

Figure 1.5 : Agrocrete + Insulmix used for wall assembly

Hollow Blocks for Low-Rise to High-Rise Dimensions (mm): 400 x 150 x 225/150/100

Tested as per IS 2185: Part II

75+ Years AAC: <50 Years

Density 800 kg/m³ AAC: 650 kg/m³

Embodied Carbon -0.14 kg CO₂/kg AAC: 0.24 kgCO₂/kg

U-value = 0.3 W/m2/K

SDI SIRJJCOA SYNERGY

• FACADE

Coolant KINETIC designed to cool the air infiltrating the structure and serve as a shading device for the building. Further details are provided in Innovation.

Categories		Units	Without Double skin (base case)	With Double skin	With Double skin 양 ventilation	With Double skin 양 water flow	With Double skin, ventilation and water flow	
Cooling Load	Total AC Tonnage	TR	34.5	30.8	28.1	28.8	26.8	
cooling Loud	Capital cost saving		S(#)		18%		16% 22%	
	Cooling		88.28	74.74	70.29	63.79	60.04	
	Fans		10.51	8.36	7.23	7.21	6.17	
EPI	Lighting	kWh/m2-	4.99	4.86	4.86	4.85	4.85	
	Equipment	yr	4.53	4.41	4.41	4.42	4.41	
	Total		108.31	92.37	86.79	80.27	75.47	
	Operational Savings		-	15%	20%	26%	30%	

Table T.1 : Annual Energy Reduction Analysis with Coolant KINETIC

ON-SITE RENEWABLE ENERGY GENERATION

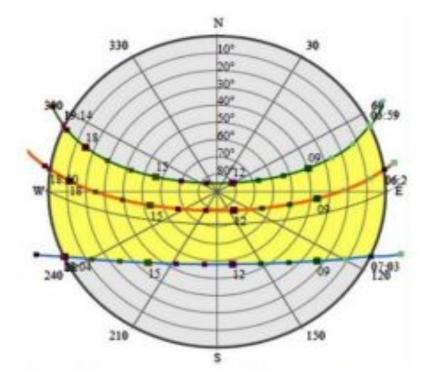


Figure 1.7 : Sun path diagram of Pimpri

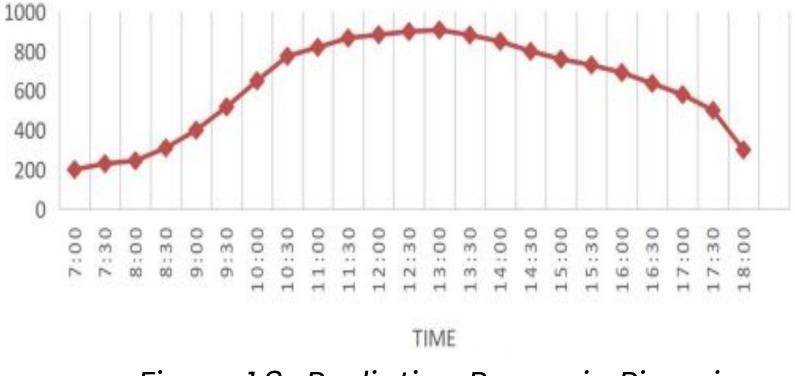


Figure 1.8:: Radiation Range in Pimpri

Solar Generation Potential:

The site promises a positive solar potential. Maximum heat is radiated into the building through the roof. It receives maximum solar irradiance compared to the building facade. The solar panels are placed on the terrace as well as mumty to meet the demands of energy requirements.

OTA Maintenance

• Highest efficiencies throughout design life

Healthy ROI

• Replacement of components

• High efficiencies in the first year only

• Unpredictable ROI

18

SDI SIRJJCOA SYNERGY

Figure 1.9 : Comparison of G2V solar solar system with other systems

ON-SITE ENERGY GENERATION POTENTIAL

Wind Generation Potential:

The site promises a positive solar potential. Maximum heat is radiated into the building through the roof. It receives maximum solar irradiance compared to the building facade. The solar panels are placed on the terrace as well as mumty to meet the demands of energy requirements.

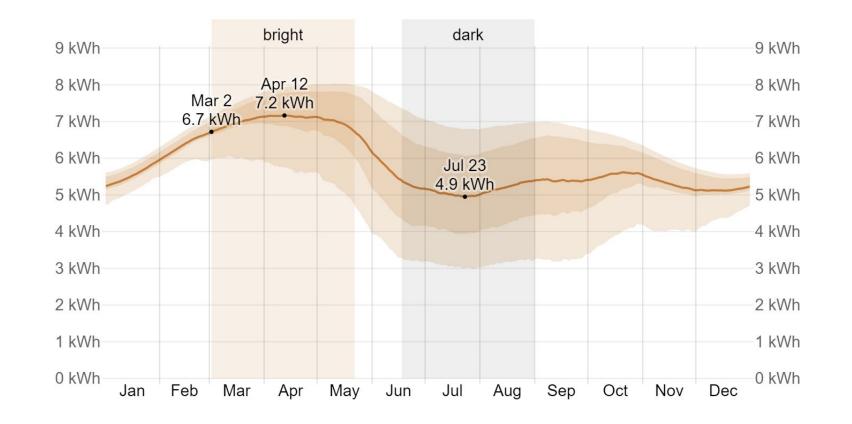


Figure 1.10 : Wind chart diagram of Pimpri

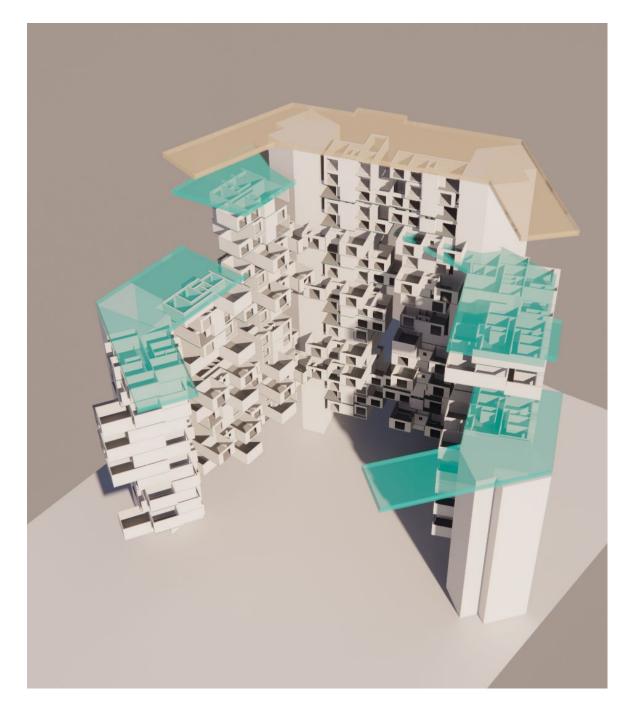
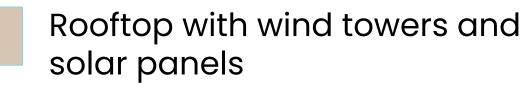



Figure 1.11 : Combined roofs to maximize area for renewable energy generation

Rooftop with solar panels only

Total rooftop area: 1120 + 590 + 525 + 330 + 550 = 3115 sq. m.

ENERGY GENERATION IN A DAY

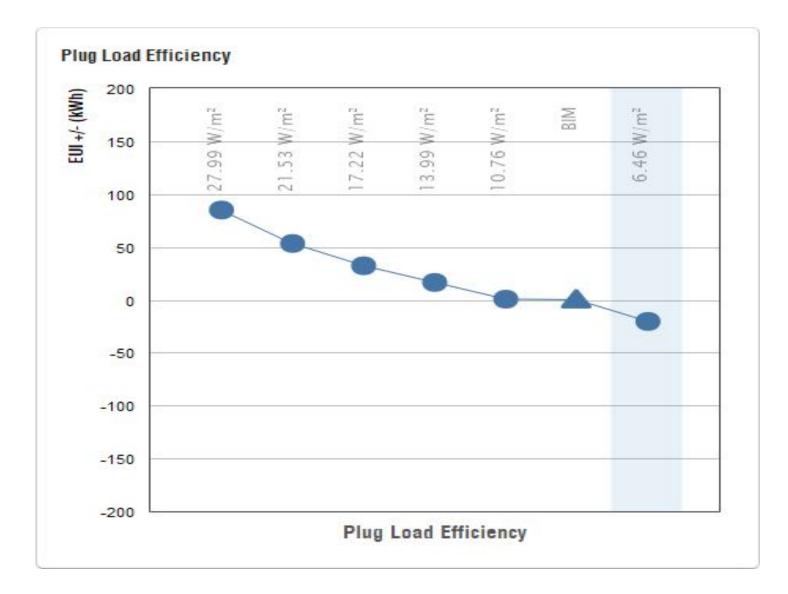
Solar Panels:

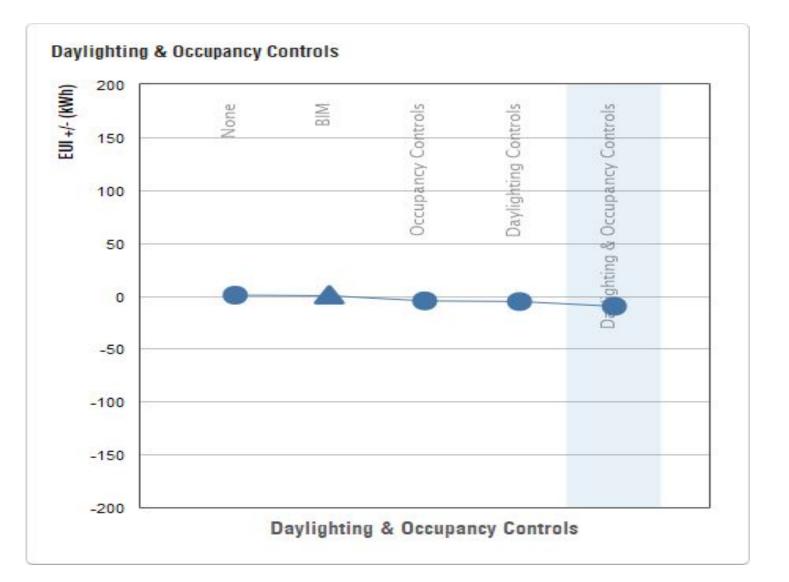
4.5kWh energy is produced for 10 sq.m. area No. of solar panels: 2500 sq.m. Energy produced: $4.5 \times 250 = 1125$ kWh

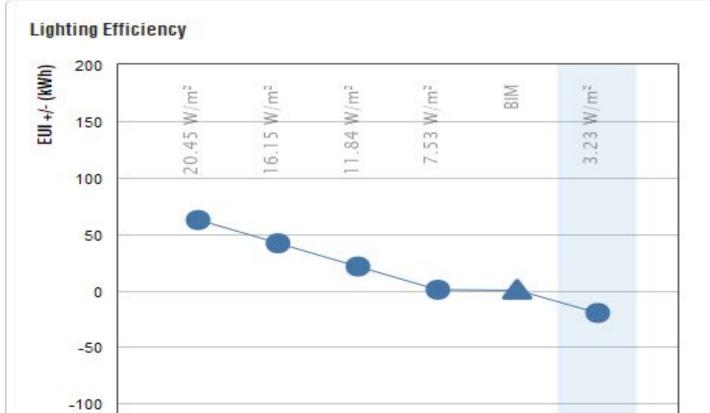
Wind Towers:

7.5kWh energy is produced for 5 sq.m. area No. of wind towers: 4 Rooftop area required: 80 sq. m. Energy produced: 120kWh

ENERGY GENERATION IN A YEAR


(Energy by solar panels + Energy by wind towers) x 365 $=(1125 + 120) \times 365 = 456,250 \text{ kWh/yr}$


ENERGY GENERATION IN A YEAR


 $456,250 / 10,57,514.5 \times 100 = 32\%$

EPI reduction achieved = 32%

Optimization of energy consumption by the use of energy efficient appliances and fixtures has been covered under Engineering and Operations.

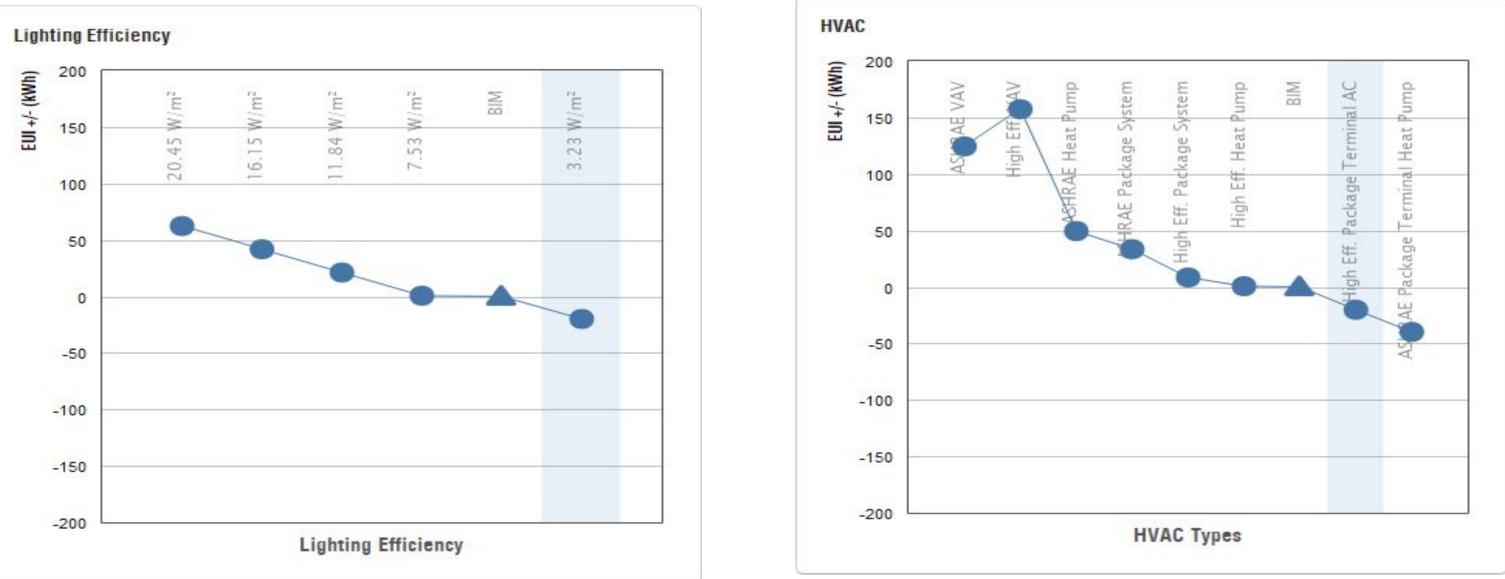
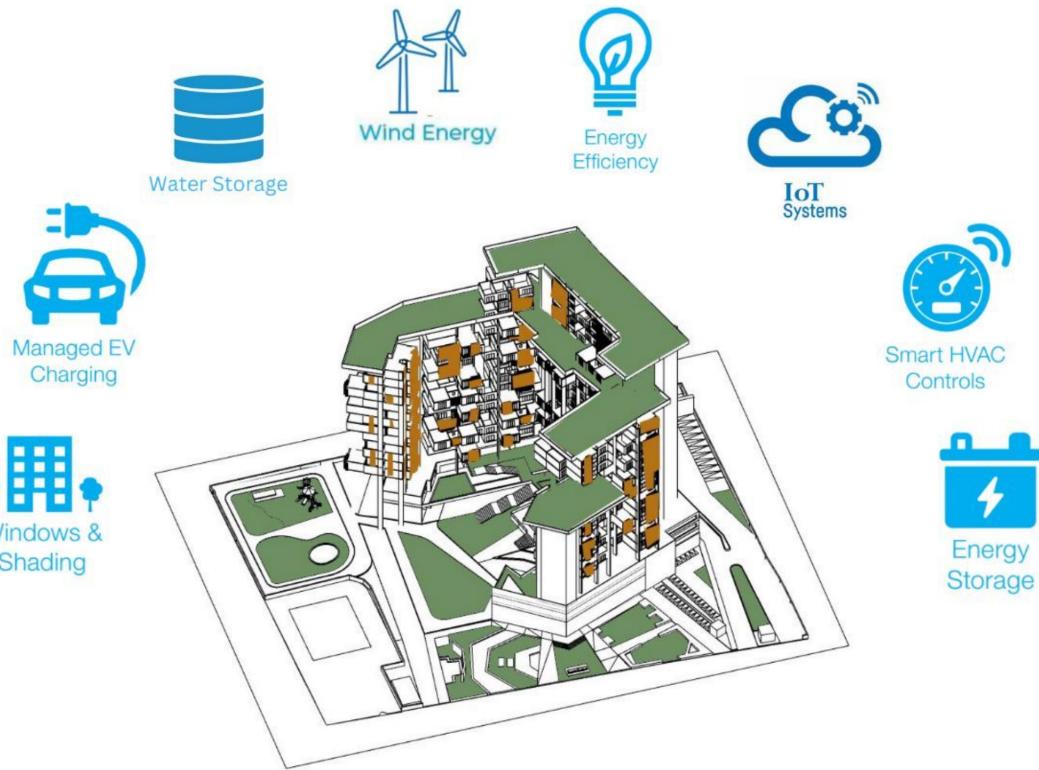



Figure 1.12 : Optimization for a) Plug Load Efficiency, b)Daylighting and Occupancy Controls, c) Lighting Efficiency, d) HVAC

OPTIMIZING ENERGY CONSUMPTION PER DAY

Base case requirement: 14,23,098.5 kWh/yr **Optimized requirement:** 11,30,234.64 kWh/yr (Same method followed as base case) Deficit energy required to be drawn from the system after on-site energy generation: 11,30,234.64-4,56,250 = 6,73,984.64 kWh/yr **Total EPI attained:** 33.76 kWh/yr/m2

SMART GRID INTEGRATION CAPABILITIES-

Windows and shading. These systems can automatically adjust the amount of sunlight and heat that enters a building, reducing the need for heating and cooling.

Managed EV charging:. This can help balance the load on the grid, reduce peak demand, and provide additional revenue streams for building owners.

Water storage: This can help to reduce the strain on the local water supply, and improve the sustainability of the project.

Wind energy: This can help to reduce the reliance on traditional energy sources, and improve the sustainability of the project.

Energy efficiency: it can reduce the overall energy consumption of the building. This can include things like LED lighting, efficient appliances, and insulation.

Windows & Shading

IoT systems: This can include things like smart thermostats, lighting controls, and occupancy sensors.

Smart HVAC controls: This can help to reduce energy consumption and improve occupant comfort.

Energy storage: This can help to improve the reliability and resilience of the building's energy system.

SDI SIRJJCOA SYNERGY

Water Performance

Domestic consumption under normal condition in an Indian city as per National. Building Code, has been taken as **135 litres** per head per day

Total no. of occupants : 1065 Water consumption per day : 135 ltrs Water requirement: 31392130.1 L

Base Case	Per Capita daily consumption (L)	_	Total Consu mption daily	Total water requireme nt in a year (L)
Base Case	135	1065	153581. 85	56057375. 3
Reduced Case	76	1065	86005. 836	31392130.1

Table T.2 Water use case

Harvested Rainwater (KI/year) = 8178 KI Amount of water saved by using Low Flow fixtures = **8K** Amount of water saved by recharging pits = 1825 KI Amount of water saved by grey water

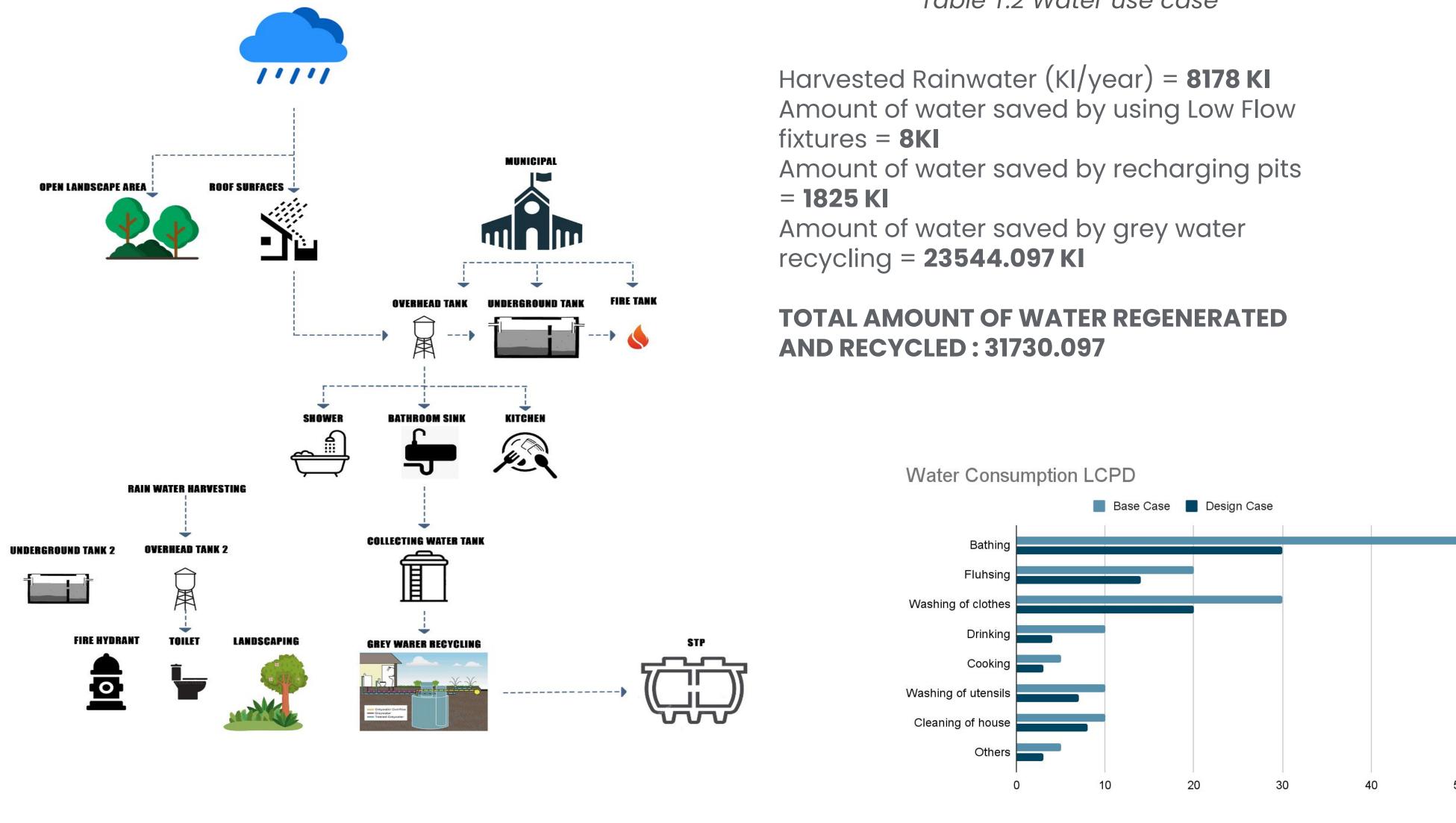


Figure 2.1 Net zero water cycle

Figure 2.2 water use case graph

SDI SIRJJCOA SYNERGY

21

Strategies used:

Install Low-Flow Fixtures: Low-flow showerheads, faucets, and toilets use less water while still providing adequate water pressure. The EPA estimates that the average household can save up to 700 gallons of water per year by installing water-efficient fixtures. Installing low-flow fixtures is relatively easy, and many models are available on the market.

NBC	
Washbasins:	6 LPM
Sinks:	6 LPM
Showerheads:	9 LPM

IGBC	
Washbasins	5 LPM
Sinks:	5 LPM
Showerheads:	9 LPM

	Urinals:	1 LPM
,	Water closets (toilets)	10 LPM

Urinals: 1 LPM Water closets (toilets): 6 LPM

Table T.3 NBC fixtures flow rates

Table T.4 IGBC fixtures flow rates

Fixing leakage in residential buildings is an important step in conserving water and reducing water bills. Leakage can occur in various areas such as pipes, faucets, showerheads, and toilets. Identifying the location of leaks is the first step towards fixing them.

Amount of leakage water saved : 8 KL

	CONVENTIONAL						
Fixture type	Max. flow rate/ consumption		Duration		Estimated daily uses per FTE	No. of users	Total usage
Water closets (full flush)	6	LPF	1	flush	1	1114	6684
Urinals	4	LPF]	flush	2	100	800
Water closets (half flush)	3	LPF]	flush	2	1114	6684
Washbasin / sink	5	LPM	0.25	minute	4	2228	11140
Health faucet	6	LPM	0.25	minute	1	2228	3342
Shower head / Handheld spray	9	LPM	8	minutes	0.1	1114	8020.8
Total usage (LPD)							36670.8

Table T.5 Conventional water usage

REDUCED – Earthfoku	Max. flow rate/		Duration		Estimated daily uses	No. of upper	Tatal yanga
Fixture type	consumption		Duration		per FTE	No. of users	Total usage
Water closets (full flush)	2	LPF	1	flush	1	1114	2228
Urinals]	LPF]	flush	2	100	200
Water closets (half flush)]	LPF]	flush	2	1114	2228
Wash basin / sink]	LPM	0.25	minute	4	2228	2228
Health faucet	4.5	LPM	0.25	minute	1	2228	2506.5
Shower head / Handheld							
spray	6	LPM	8	minutes	0.1	1114	5347.2
Total usage (LPD)							14737.7

Table T.6 Reduced case by using Earthfokus fixtures

Earthfokus faucets are some of the best water saving fixtures

Figure 2.4 Water Usage Pattern

Faucets, Health

faucets, Shower

22

Figure 2.3 Earthfocus Ecostream diamond specifications

SDI SIRJJCOA SYNERGY

RAINWATER HARVESTING

Rain water harvesting technique is one of the other alternatives to manage and conserve water for a secure and sustainable future.X

Roof	Roof/Non Roof area dimensions of Mahindra Homeground Pimpri Chinchwad				
Sr.n o.	Particulars	Area(sq.m.)			
I	Total Site Area	1 1126.74			
2	Rooftop Area (All Towers+Amenity Blocks)	2360.16			
3	Hardscape Area	5266.29			
4	Podium Area	2034.83			
S	Softscape Area	1465.46			

Table T.7 Area specifications of project

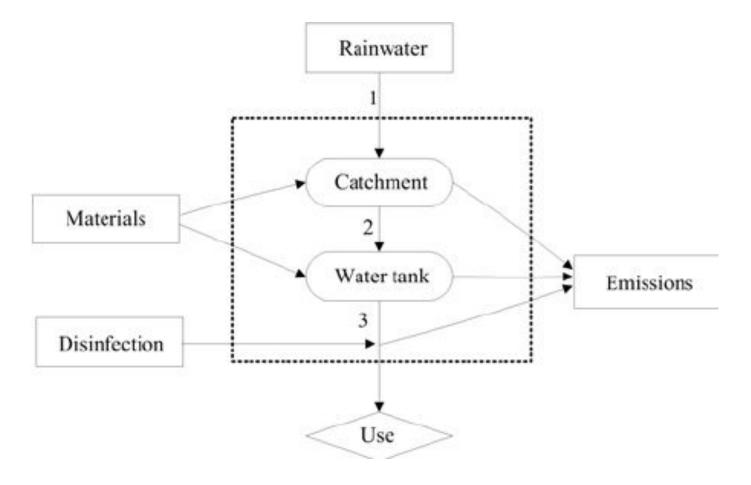


Figure 2.5 Rainwater Harvesting Process

23

SDI SIRJJCOA SYNERGY

Estimation	n of Rainwater Availability per yea	r			
Sr. o.	Particulars	Area(m2)	Average yearly rainfall	Runoff Coefficient	Rainwater Harvesting Potential (Rainwater endowment)(m ³)
2	Rooftop Area	2360.16	0.735	0.95	1647.98172
3	Podium Area	2034.83	0.735	0.95	1420.820048
4	Hardscape Area	5266.29	0.735	0.95	3677.186993
5	Softscape Area	1465.46	0.735	0.25	269.278275
	Total Plot Area	11,126.74	Total Quantity o	f available rainwater	7015.267035

Table T.8 Rainwater harvesting Potential

A) Total Availability of Rain water before construction (For Open Plot)

= Geographical area x Rainfall x Runoff Coefficient

= 11126.74 sq.m. x 0.735 mts. (Rainfall 705 mm) x 0.50 (Coeffi. of Runoff)

= 4089.07 M³

- B) Total Availability of Roof top water
- = Geographical area x Rainfall x Runoff Coefficient
- = 2360.16 sq.m. x 0.735 Mt. (735 mm) x 0.95
- = 1647.9817 M³

C) Total availability of Non-Rooftop water =5367.2853 M³

D) Total availability of rooftop water in one day

- = Surface area x Runoff Coefficient x One-day Rainfall.
- = 2360.16 sq.m. (total rooftop area) x 0.95 x 0.016
- = 35.874432 m³

Х

Total effective catchment area: 9544.581 sq.m Total Rainfall harvested in a year (KL) : 8178.1539

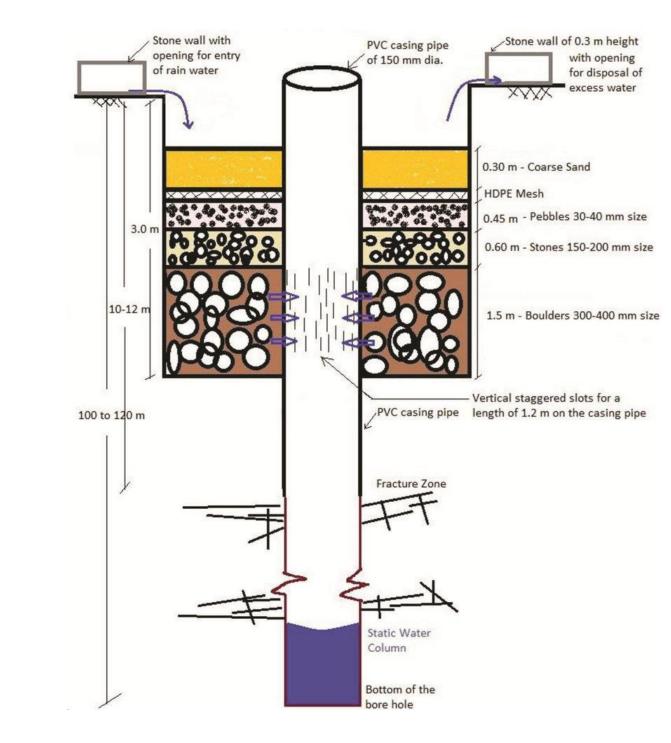
RECHARGE BOREWELL

Recharge borewell is a simple yet effective strategy to conserve water by recharging the groundwater level. It involves drilling a borewell and then using a filtration system to divert the rainwater collected from rooftops, roads, and other surfaces into the borewell. The water is then filtered and allowed to percolate into the ground, replenishing the groundwater table. This helps to reduce the dependency on freshwater sources and provides a sustainable solution for water conservation. By implementing recharge borewell, we can improve the availability and quality of groundwater, reduce water scarcity, and promote the sustainable use of water resources.

Bore Hole Diameter in m	Borewell Depth in m	Holding capacity of one borehole in Cum	Total number of recharge BW	Total holding capacity for 3 BW in Cum
0.1524	60.97	1.11218	3	3.33654

Table T.9 Holding capacity of Borewell

Water Holding Capacity of one recharge pit in Cum		
9.675	3	29.025


Table T.10 Holding capacity of recharge pits

Total Holding Capacity of 3 Recharge Pits in Cum	Total Holding Capacity for 3 BW in Cum	Total Holding Capacity for 3 BW in Cum
29.025	3.33654	32.36154

Table T.11 Holding Capacity for 3 BW in Cum

RWH pit one-day capacity

- 1. RWH pit capacity till 800mm free board space
- -1.5x1.5x0.8

- = 1.8 cum (no infiltration rate considered as no filtration medium provided)
- 2. RWH pit capacity for space occupied by filtration layer-(depth 2.15 m)

 $=|5x15\times215\times0,288\times24|$

- 33.4368 cum (considering infiltration rate of 288 mm/hr for weathered compact basalt) Source- (As per actual field test at the site)

3. Total RWH holding capacity 1.8 cum+33.4368 cum

35.2368 Cum

RWH pit cum barewell one-day capacity

```
1. Shallow aquifer percolation per day -2.5-7.5 cum (based
on slug lest-refer to section 4.10 Recharge estimation
from slag test analysis)
```

2. Borewell Tube 1-day holding capacity-

Volume of Borehole-h

11 0.0762-60.97

- -0.3540186468
- -11121 Cam (No filtration rate considered as no filtration) medium provided)

-7x35.2368 cum

-245.6576 Cum

Total 1-day holding capacity of 3 pits cum recharge Borewells

-13 x 35.2368) (1.1121 x 3)

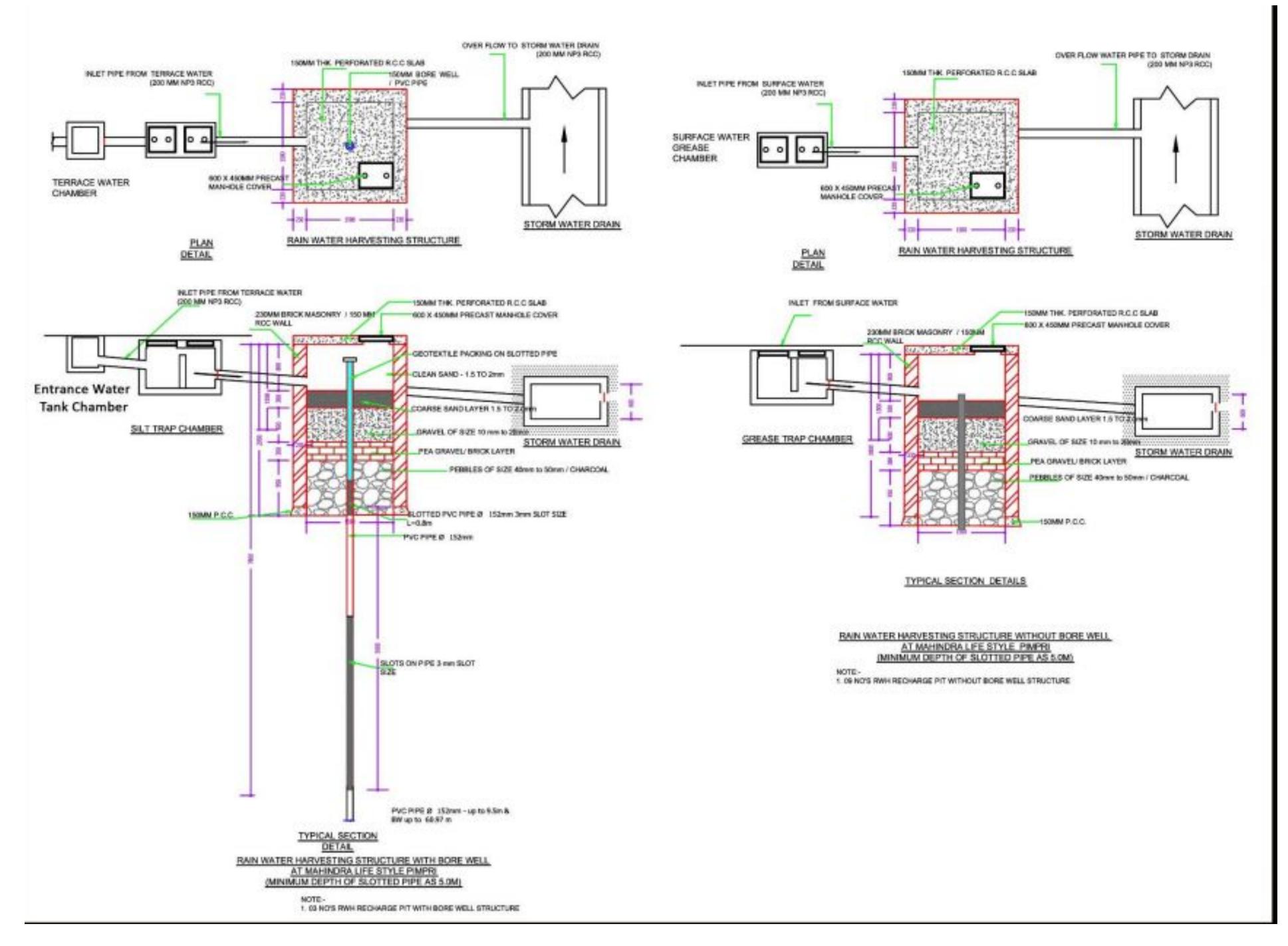
109.0467 Cam

3. Total I day holding capacity of 7 recharge pits and 3 pit cum Recharge Borewells in

Figure 2.6: Recharge borewell

3. RWH pit capacity as above-35.2368 Cum

Carn is Total RWH holding capacity of 1 Pit cum Recharge BW 75 cum +1.1121 Cam+35.2368 Cum


433489 Cum

Total I day hobling canacity for 7 RWH pits & Pit cum Recharge Borewells

-246.6576-109.0467

354 7043 Cum

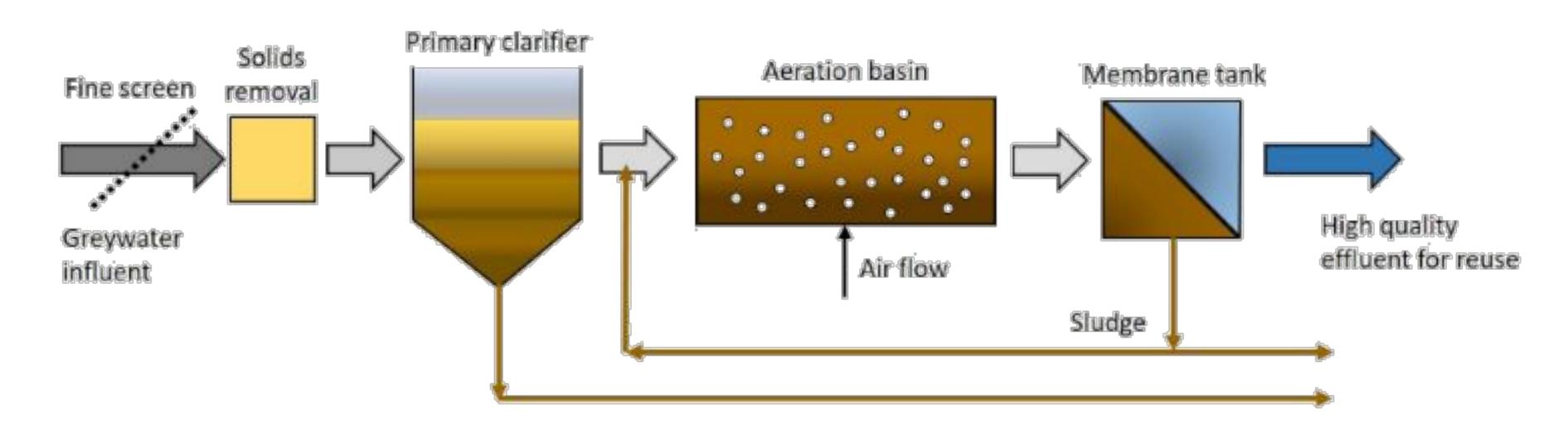


Figure 2.7: Recharge pits details

Grey water recycling

Amount of grey water recycled: 23544.097 KL

• **Greywater** generated can be collected and reused for non-potable purposes, such as irrigation, toilet flushing, and laundry. Reusing greywater can conserve freshwater resources, reduce wastewater treatment costs, and decrease the strain on wastewater treatment plants.

STP Calculations : ECOSTP

The technology works independent from power supply and daily surveillance, treating the wastewater to pollution control board specifications. The ECOSTP product comprises of three separate units as shown in figure

	Space Required (in Sq.mtrs)				
CAPACITY (In KLD)	Primary & Secondary Treatment (Stage1,2&3)*	Tertiary Treatment (Stage -4 PBF - Plant Bio Filter)**			
85	190	102 (clear area)			
 Primary & Secondar reused completely. 	ry Treatment Plant Area goes unde	rground and space can be			

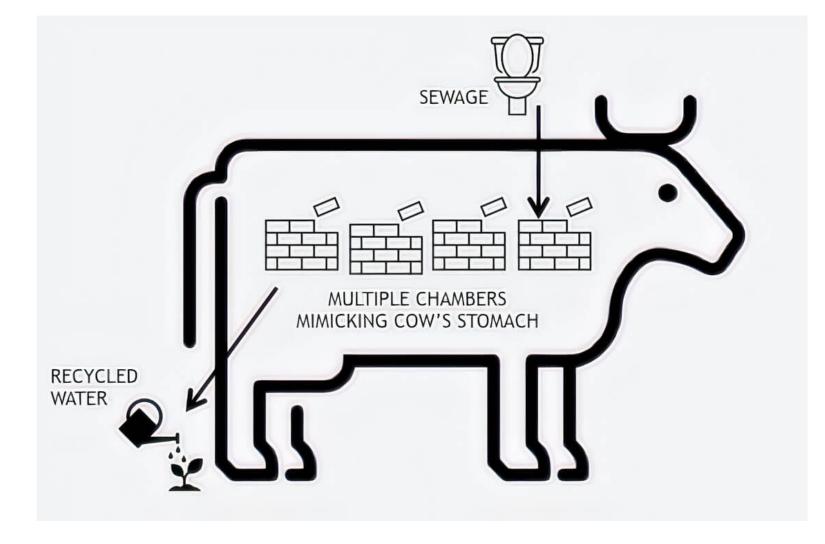
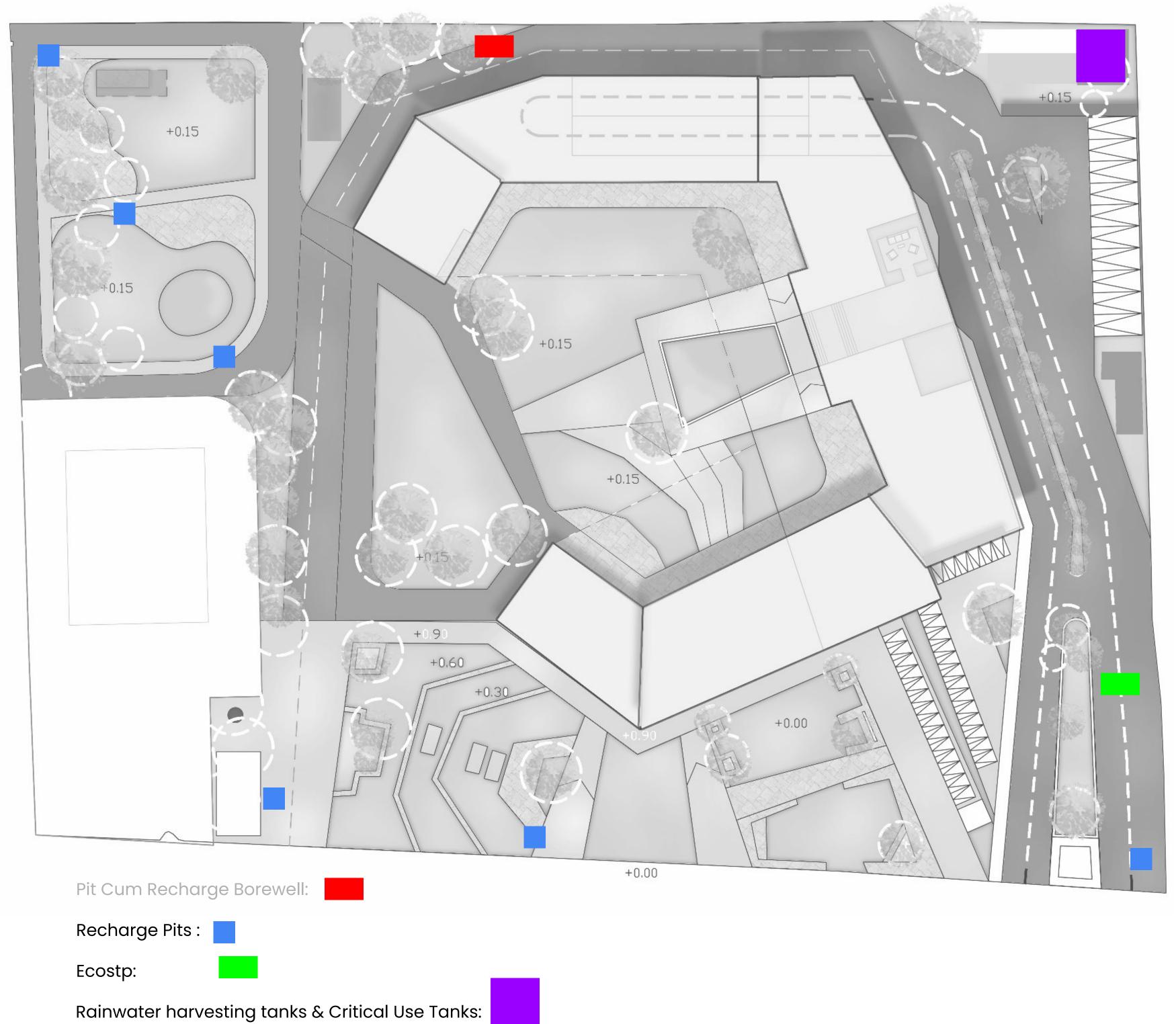



Figure 2.8 : ECOSTP

Figure 2.9 : Borewell, Recharge pits and ECSTOP location on site

EMBODIED CARBON

This section outlines 4 strategies based on research, market study and industry partnerships, that lower the embodied carbon of the project. Summary of Embodied Carbon emissions per functional unit of building systems is provided in the Appendix.

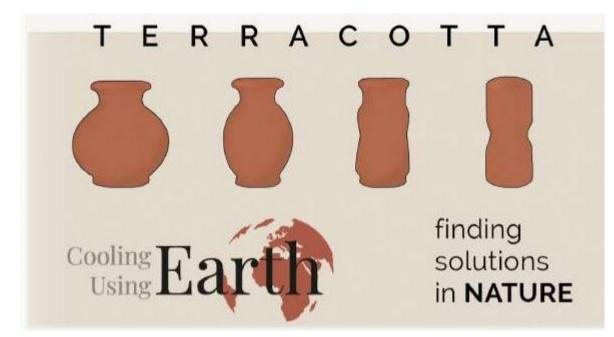
1. CARBON-NEGATIVE BUILDING MATERIAL USE

The primary building material used for walls is Agrocrete, which is made from agricultural waste.

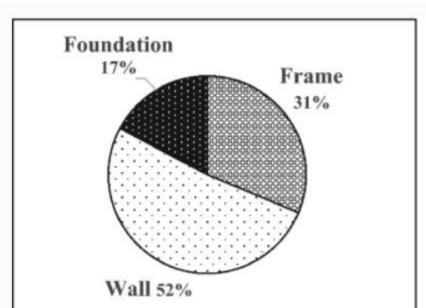
2. MODULAR PREFABRICATED CONSTRUCTION REDUCING EMBODIED EMISSIONS

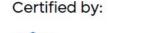
As per studies, going for prefabricated construction reduces embodied emissions at various levels.

Components	EE conventional building (MJ)	EE prefabricated building (MJ)	
Total transportation	267,978.15	115,956.10	
Total material	4,229,616.10	3,502,610.57	
Plant process 32,524.07		13,046.20	
Site process 78,858.17		6530.20	
luman labor 40,303.52		93,964.90	
Total EE 4,649,280.01		3,732,107.97	
otal EE per unit 5.01		4.02	
Floor area (GJ/m ²)			


Table T.12 : Embodied Energy of prefabricated and conventional building

3. REDUCING MATERIAL WASTE AT CONSTRUCTION STAGE


MIG and HIG, usually break walls and fixtures provided by developers to suit their functional and aesthetic requirements. Opting for an open floor plate design and not building interior walls at the construction stage, not only gives the flexibility to users to customize according to needs but also reduces the carbon wasted of breaking down the walls constructed by developers.


4. USING NATURAL AND LOCAL BUILDING MATERIALS TO OFFSET COOLING DEMANDS

Coolant KINETIC, the shading system designed is made of terracotta tubes manufactured by local artisans.

Material plays a prime role in defining the heat transmission through the building envelope. Terracotta is a porous material, which when comes in contact with water stores tiny pores that evaporate. taking away the heat from the water (latent heat) similar to human skin.

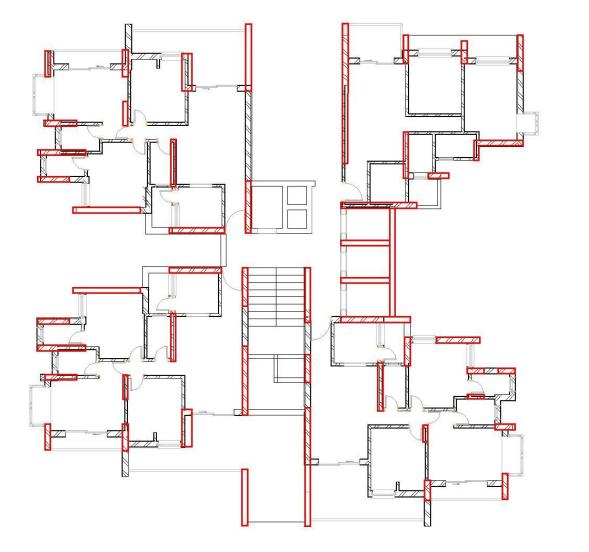
Capillary actions and porosity for evaporative cooling

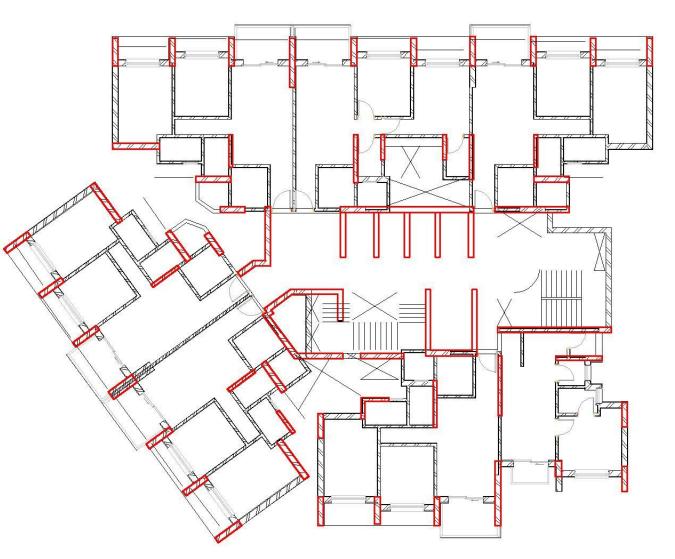
Sustainable

Returns to soil after its lifespan

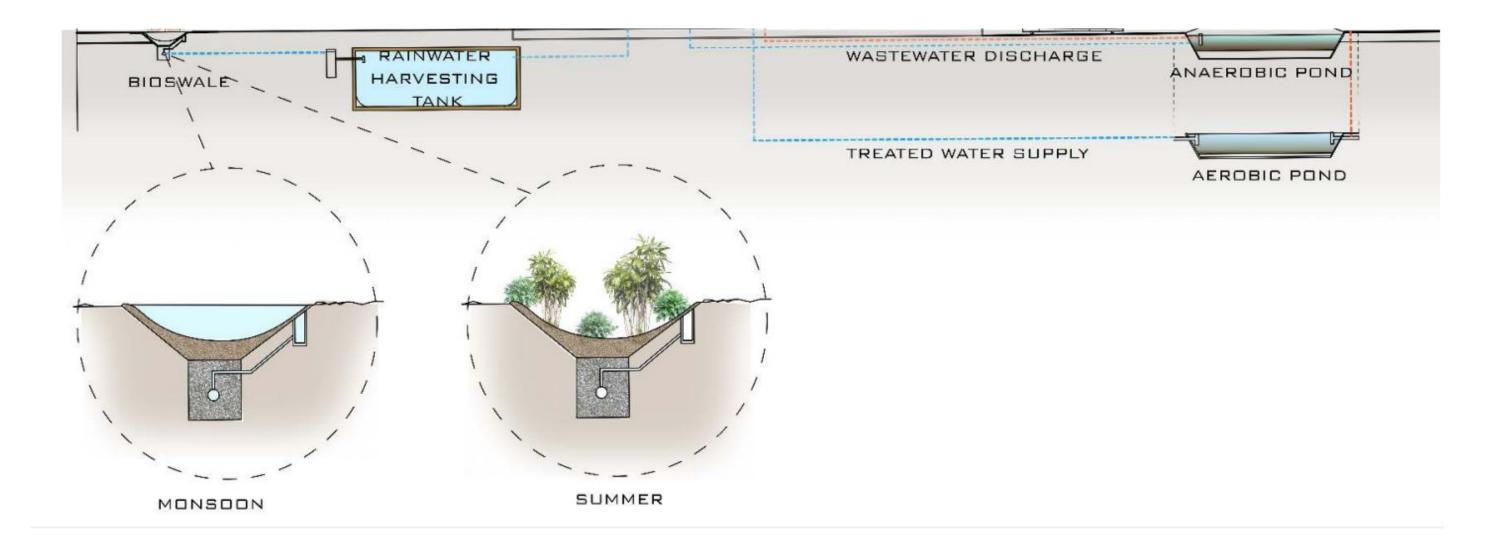
Locally and naturally available

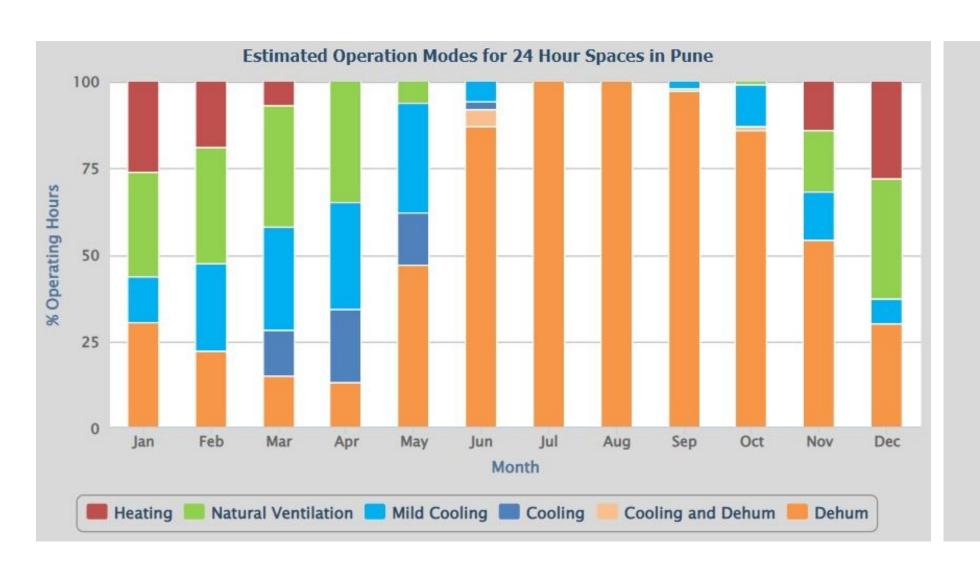
Figure 3.1 : Walls account for 52% of embodied emissions in construction

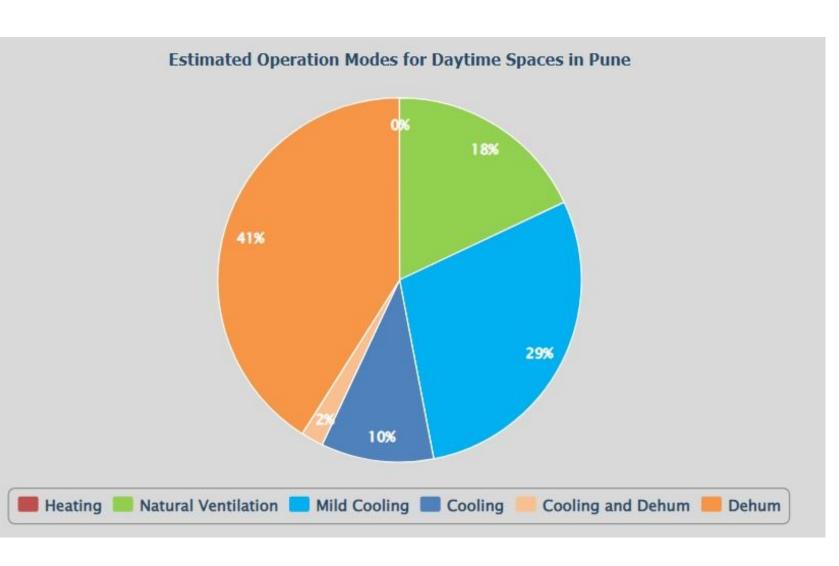

27


Figure 3.2: terracotta as a coolant

Resilience


STRUCTURAL RESILIENCE AGAINST SEISMIC FORCES




The columns have been arranged in an orthogonal grid with almost equal distribution of horizontally aligned columns and vertically aligned columns. For greater stability shear walls have been provided. The expansion joint is given at certain points to optimize the vibrations in the building.

BIOSWALES PROVIDED TO MITIGATE STORMWATER RUNOFF AND PREVENT WATER LOGGING

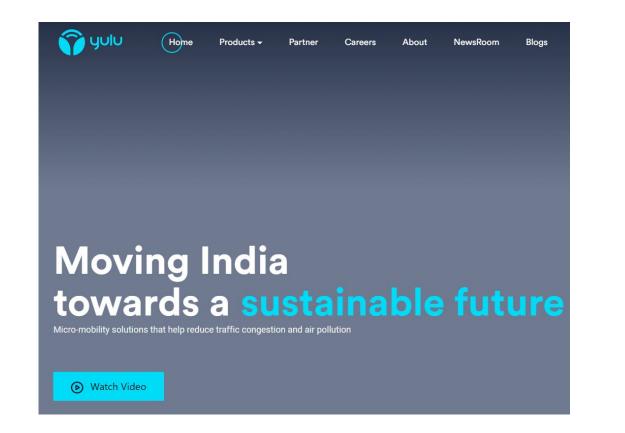
THERMAL COMFORT PROVIDED WITHOUT DEPENDING ON MECHANICAL MEASURE DURING COMFORT HOURS As per IMAC Tool. -

- Critical Water Storage tank with 8000 KL provided along with rainwater storage tank. Refer Fig. 3.2 for location. Solar energy stored in battery banks. During Critical hours power from EV charging station also drawn to power common service areas like lifts, passages. (Refer Energy Performance section for energy generation capabilities.

SECURITY

- Contact-less delivery system by robots.
- Reducing number of delivery persons entering the premises.
- Simplifying the delivery and collection system.

Figure: 4.1"Loomo Delivery Ambiator" by Segway Robotics

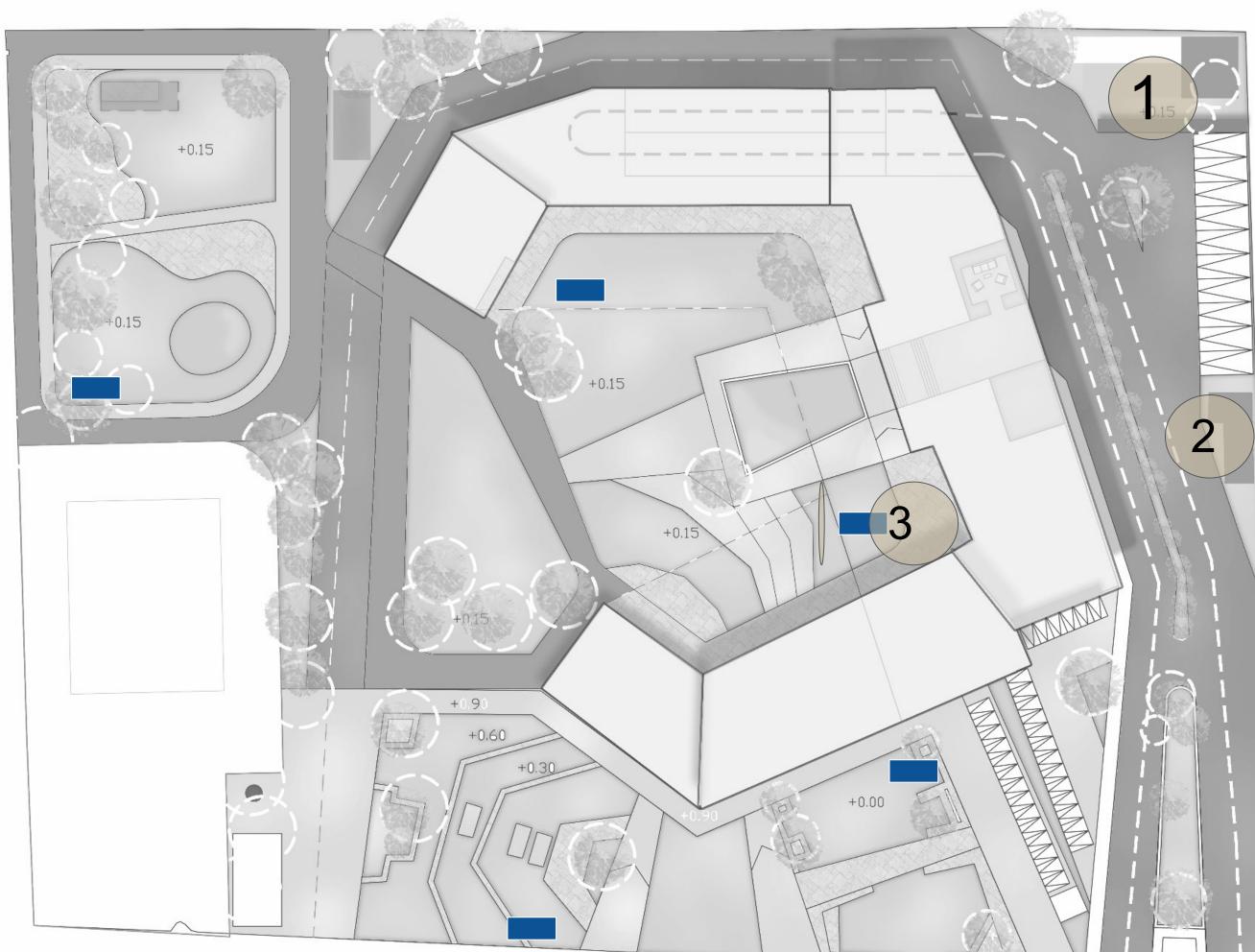

Loomo Delivery Ambiator : Is a mobile robot designed for indoor delivery services and is equipped with advanced autonomous navigation capabilities.

Here are some of the key features of the Loomo Delivery Ambiator:

- Delivery capability:The Ambiator is designed for delivering goods in a variety of indoor settings, such as hospitals, hotels, and office buildings. It can carry up to 50 kg (110 lbs) of goods in its cargo area.
- Autonomous navigation: The Ambiator uses advanced sensors to navigate autonomously in complex indoor environments. It can avoid obstacles and adjust its path in real-time to ensure safe and efficient delivery.
- Smart mapping: The Ambiator can create detailed maps of its surroundings and use them to plan the most efficient delivery routes
- Human-robot interaction: The Ambiator features a user-friendly touchscreen interface that allows users to interact with the robot and track their deliveries in real-time.
- Customization options: The Ambiator can be customized to meet the specific needs of different industries and businesses.

https://www.directindustry.com/prod/segway-robotics/product-233412-2330301.html

MICROMOBILITY



29

SDI SIRJJCOA SYNERGY

- 1. Last-mile connectivity: Yulu bikes can be used to bridge the gap between the residential campus and the nearest public transportation hub. This can help residents save time and effort while commuting.
- 2. Eco-friendly transportation: Yulu bikes are electric and emit zero emissions, making them an environmentally friendly mode of transportation. This can help reduce the carbon footprint of the residential campus and promote sustainability.
- 3. Cost-effective transportation: Yulu bikes are relatively inexpensive compared to other modes of transportation. This can help residents save money on transportation costs.
- 4. Convenience: Yulu bikes can be easily rented using a mobile app, and can be parked at designated locations within the residential campus. This can make it a convenient mode of transportation for residents.

Waste Management

LEGENDS

- 1. Composting pit
- Dry waste storage and MRF
 Dustbin : dry /wet/plastic
- waste

Figure 4.2: Waste Collection Locations +0.00

No. of Occupants						
No.of units	Units	Occupants as per IGBC	Total			
Studio	8	2	16			
1 BHK	46	2	92			
2 BHK	<mark>31</mark> 8	4	1272			
3 BHK	126	5	630			
Total	498	13	2010			

Table T.13 : Calculation of total number of occupants

Sr.no.	Type of waste	Waste Generation Factor	Waste Generation (kg/day)	Waste Generation (ton/year)	Treatment of Disposal
1.	Garden waste		0.00	0	Composting
2.	Biodegradable/ Food waste	0.4743	2.77	1	Composting
3.	Paper	0.0813	0.48	0	Recycling
4.	Plastic	0.0922	0.54	0	Recycling
5.	Metal	0.0050	0.03	0	Recycling
6.	Glass	0.0101	0.06	0	Recycling
7.	Rags	0.0449	0.26	0	Reuse
8.	Inert	0.2516	1.47	1	
9.	Other	0.0402	0.23	0	

According to SWATCH BHARAT MISSION kg/per day waste generation factor for Pune is <u>'0.46'</u>

So accordingly as per occupancy and waste generation factor '<u>924.6 kg/perday'</u> waste is generated

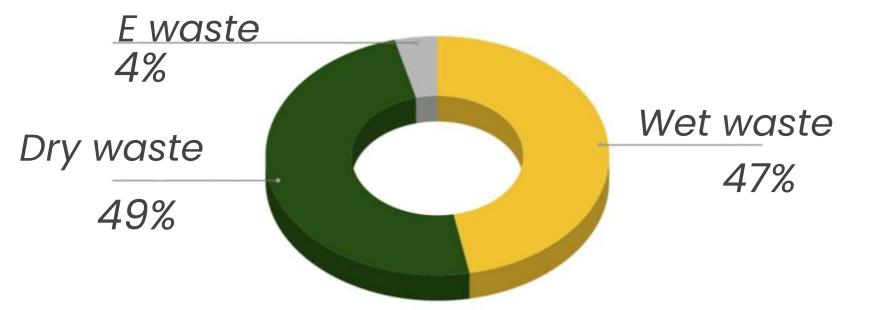
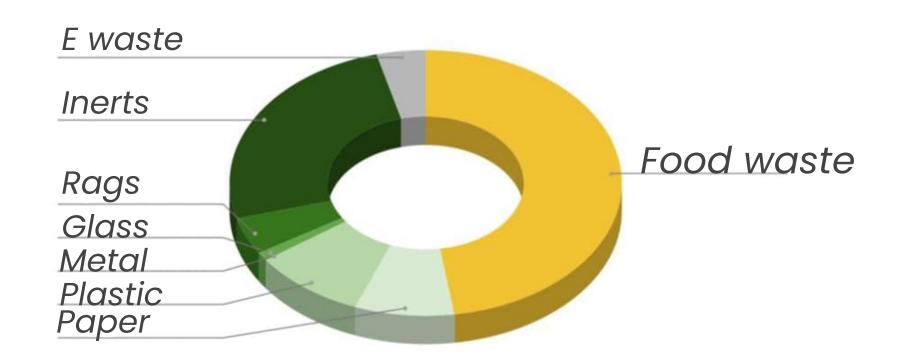
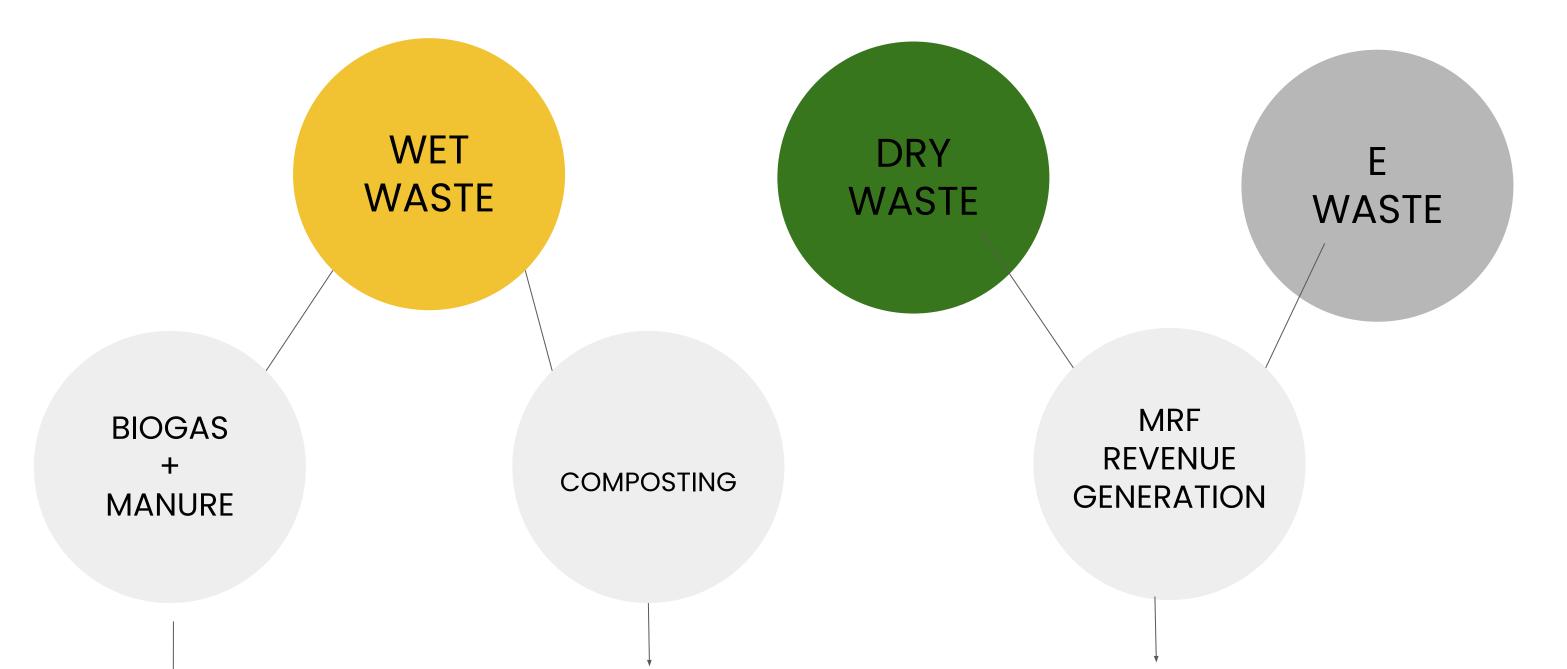



Figure 4.3: Pie chart indicating waste distribution


Figure 4.4: Pie chart indicating types of waste

SDI SIRJJCOA SYNERGY

30

Table T.14 : Waste generation by type based on waste generation Factors and its treatment method

Waste Management and Techniques

Biogas plant by Vayu generates 10000 liter biogas for every 7-10 kgs of wet waste, which is equivalent to 335 grams of LPG along with slurry as bi product which proves to be a great natural

Composting helps to dispose off wet waste in a productive way, creating sustainable gardens, and also provides the opportunity for societies to generate extra income by the sale A materials recovery facility (MRF), sometimes called a materials reclamation facility or materials recycling facility, is a plant that separates and prepares single-stream recycling materials to be sold to end buyers.

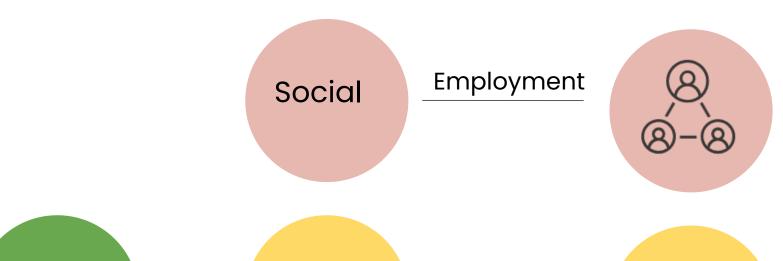



Figure 4.5: Composting process

Figure 4.6: Biogas & Manure generation process

MRF will create employment opportunities for the local people. These facilities require human labour to help in efficient segregation of the waste units. Labour is also required to manage the entire facility from the start (collection) till the end (selling).

Segregated waste units are compressed and moulded into cubicle

units. These units are sold to industries/ end consumers that require these materials. Funds collected from this are used to maintain the MRF facility, and at the same time increase the institution's infrastructure.

This method of solid waste management helps in achieving a net-zero waste status for the building wherein we are not contributing to dumping the building's waste in landfills. We are treating/processing our waste onsite and reducing its impact on environment as much as possible.

Engineering and operations

PREFABRICATED CONSTRUCTION DETAILS

It is a system of formwork for RCC that stays in place as a permanent interior and exterior for walls, floors, and roofs. These are interlocking modular units that are filled with concrete. ICFs are really a hybrid prefab material, since installing rebar and pouring concrete is done on-site, they offer many of the cost and environmental benefits of pure prefab. Compared with traditional concrete construction, it is faster to stack ICF foam blocks and since they are not removed, there is much less waste. ICFs provide much better thermal insulation than conventional framed construction. Since the wall is solid, there is no possibility of convection within the wall.

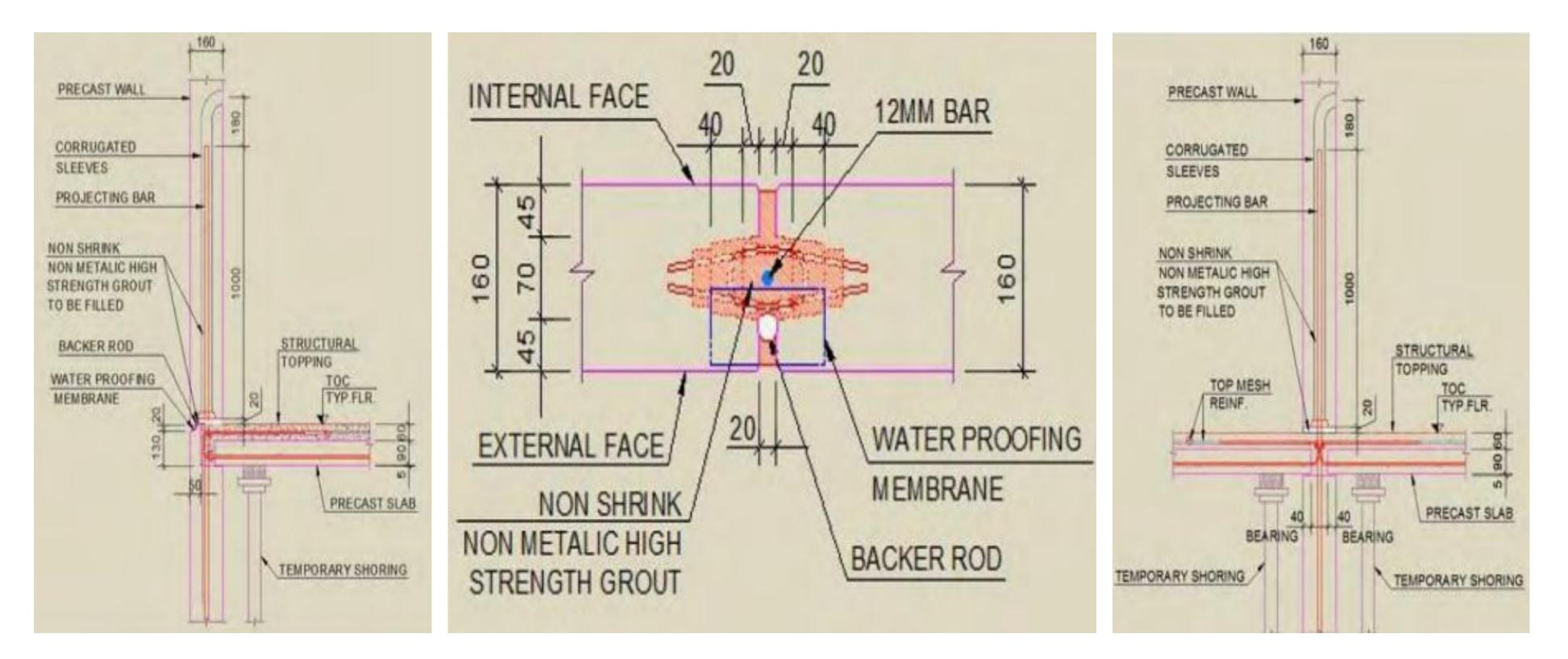


Figure 5.1: Wall to slab connection :Section

Figure 5.2: Wall to wall connection: Plan

Figure 5.3:Ex. Wall to Int. wall connection: Section

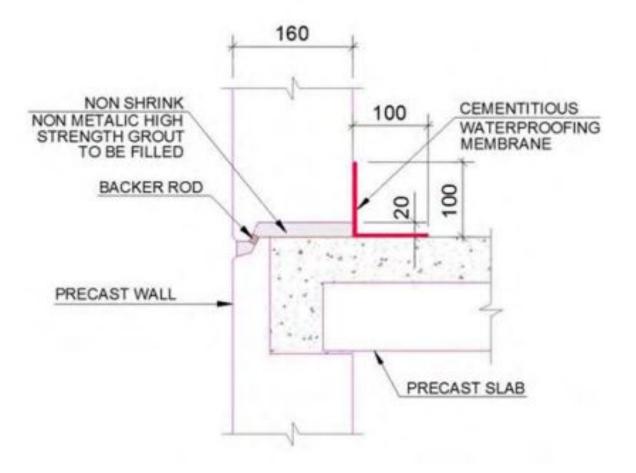


Figure 5.4: Cementitious waterproofing membrane

DESIGN LOAD

 Dead loads – the dead load shall comprise of self-weight of all the frames and shell elements modelled in the structure as well as

WATERPROOFING

External joints shall be sealed with baker rods and sealants after filling the joints with grout to avoid the leakage. Additional waterproofing treatment shall be provided at external joints and wet areas to ensure water tightness.

FIRE RATING

Fire rating period of fire resistance of RCC buildings is based on NBC requirements. To meet the fire rating requirement, provision specified in IS 456:2000 shall be followed.

	I dole o			
Load combination	Limit state of collapse	Limit	state	of

self-weight of slabs.

- Imposed loads The imposed loads that are envisaged to act permanently (whichever applicable) are as follows: i. Waterproofing: Shall depend on the thickness, slope and kind of material to be used for waterproofing ii. False ceiling/Internal partitions: False ceiling load shall be calculated based on type of material and thickness using unit weights specified in IS 875(Part 1):1987.
- Partition loads shall be as per actuals. iii. All structural elements: Layout and size of elements shall be followed as per structural requirements.

		serviceability			
DL	LL	WL/EL	DL	LL	WL/EL
1.5	1.5		1.0	1.0	
1.5/0.9*		1.5	1.0		1.0
1.2	1.2	1.2	1.0	0.8	0.8
1.5/0.9*		1.5	1.0		1.0
1.2	1.2	1.2	1.0	0.8	0.8
1.2	2 1721 57	1.2	1.0		0.8
	1.5 1.5/0.9* 1.2 1.5/0.9* 1.2 1.5/0.9* 1.2	1.5 1.5 1.5/0.9* 1.2 1.2 1.5/0.9* 1.2 1.2 1.5/0.9* 1.2 1.2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DL LL WL/EL DL 1.5 1.5 1.0 1.5/0.9* 1.5 1.0 1.2 1.2 1.2 1.0 1.5/0.9* 1.5 1.0 1.2 1.2 1.2 1.0 1.5/0.9* 1.5 1.0 1.2 1.2 1.2 1.0	DL LL WL/EL DL LL 1.5 1.5 1.0 1.0 1.5/0.9* 1.5 1.0 1.2 1.2 1.2 1.0 0.8 1.5/0.9* 1.5 1.0

Table T.15 : Load calculations

SDI SIRJJCOA SYNERGY

EQUIPMENT EFFICIENCY

Appliances		Units/W		X	Count	=	Load
Bulb	5W	~	5	x	432	=	2160
Ceiling Fan	50W	~	50	X	32	=	1600
Table Fan	Other	~	32	X	10	=	320
TV	150W	~	150	X	7	=	1050
Air Conditioner	1.5TON	l ~	1500	X	15	=	22500
Washing Machine	700W	~	700	X	7	=	4900
Water Pump	-Select-	• •	0	X		=	0
Geyser	800W	~	800	X	10	=	8000
Heater	550W	~	550	X	7	=	3850
Refrigerator	150litre	s ~	60	X	7	=	420
Electric Iron	550W	~	550	X	7	=	3850
Mixer / Grinder	150W	~	150	X	7	=	1050
PC / Laptop	100W	~	100	X	10	=	1000
Microwave Oven	1000W	~	1000	X	7	=	7000
Radio	50W	~	50	X	2	=	100
Stove	750W	~	750	X	7	=	5250
Cloth Drier	200W	~	200	X	7	=	1400
Electric Clock	5W	~	5	X	7	=	35
Cooking Range	5000W		5000	x	7	_	35000

Appliances	Cost in rupees	Power	Image of appliance
HP Pavillion 12 gen series laptop	64000	140	Pavilion
Panasonic exhaust fan f-av 30as2	1190	32	
IFB 5 star washing machine	23500	360	
HVLS Ceiling fan	6550	350	
Samsung smart refrigerator 5star direct cool	17590	300	DIGITAL
Panasonic convention microwave	10790	750	
SAMSUNG 55 inch tv	35990	57	
5 star electric cooktop	7990	90 <mark>0</mark>	


Table T.17 : Suggestive appliances to

Table T.16 : Load calculation per day per floor

Images of Lighting Fixtures :			A.A.				
Type of Light	Suspended LED light	Ceiling mounted LED light	Ceiling down light	Ceiling down light 2	Table Lamp	Candle bulb	False ceiling light
Company	Philips	Philips	Philips	Philips	philips	philips	philips
Wattage(w)	30	16	20	12	10	8	8
Average Lumen received (Im)	4000	2000	2000	1000	800	600	600

Table T.18 : Energy efficient lighting reducing demand loads

HVAC OPTIMIZATION

 Decentralized cooling using AMBIATOR technology is a cost-effective and environmentally friendly choice for high rise

AMBIATOR Specifications

Description	Units	Value
Cooling Capacity	TR Equivalent	5
Air Quantity	CFM/CMH	3000/5000
Height	mm	2000
Width	mm	750
Depth	mm	1000
Weight	Kg	180
Fan Motor	Watts	800
Fan	Туре	Plug Flow (TORO)
Air Flow	Туре	Blow Through
Drive	Туре	Direct
Pump Motor	Watts	120
Pump Body	Туре	Cast Iron
Electrical Input	Туре	440 V – 3 Phase
Control Panel	Туре	Integral with IoT
Temperature Control	Туре	IoT
Humidity Control	Туре	IoT
Fan Speed Control	Туре	VFD + IoT
Remote Monitoring	Туре	IoT via Web / App
Casing	Туре	GI
Protection	Туре	Powder Coating
Process IDEC	Туре	Regenerative
Protection	Туре	Granted Indian Patent
Air Filters	Туре	20 Micron (Washable)
Ambient Temperature	0C	Below 50
Ambient Humidity	%	Below 55
Supply Air (Summer)	°C	18-24
Supply Air (Monsoon)	°C	25-27
Sound (Indoors)	dba	Below 50
Water Use	Liters/Hour	10-25

residential buildings.

- Its energy efficiency, lower cost of maintenance and servicing, and reduced GHG emissions make it a superior alternative to traditional district cooling or VRF/VRV systems.
- The AMBIATOR is 30% less expensive than an equivalent VRF/VRV system. The differential payback is typically 1 summer season.

Products	Power	Сарех	Opex
AMBIATOR	1 kW	Low	Low
AC	7.5 kW	High	High

SDI SIRJJCOA SYNERGY

- Ambiator 1 TR can be accommodate for a unit on the service Slab provided for the toilets. From here supply and return air ducts are taken to the rooms where air conditioning is required As per user preference.
- Since interior walls would be designed as per users, ducting Systems can also be accommodated along with them.

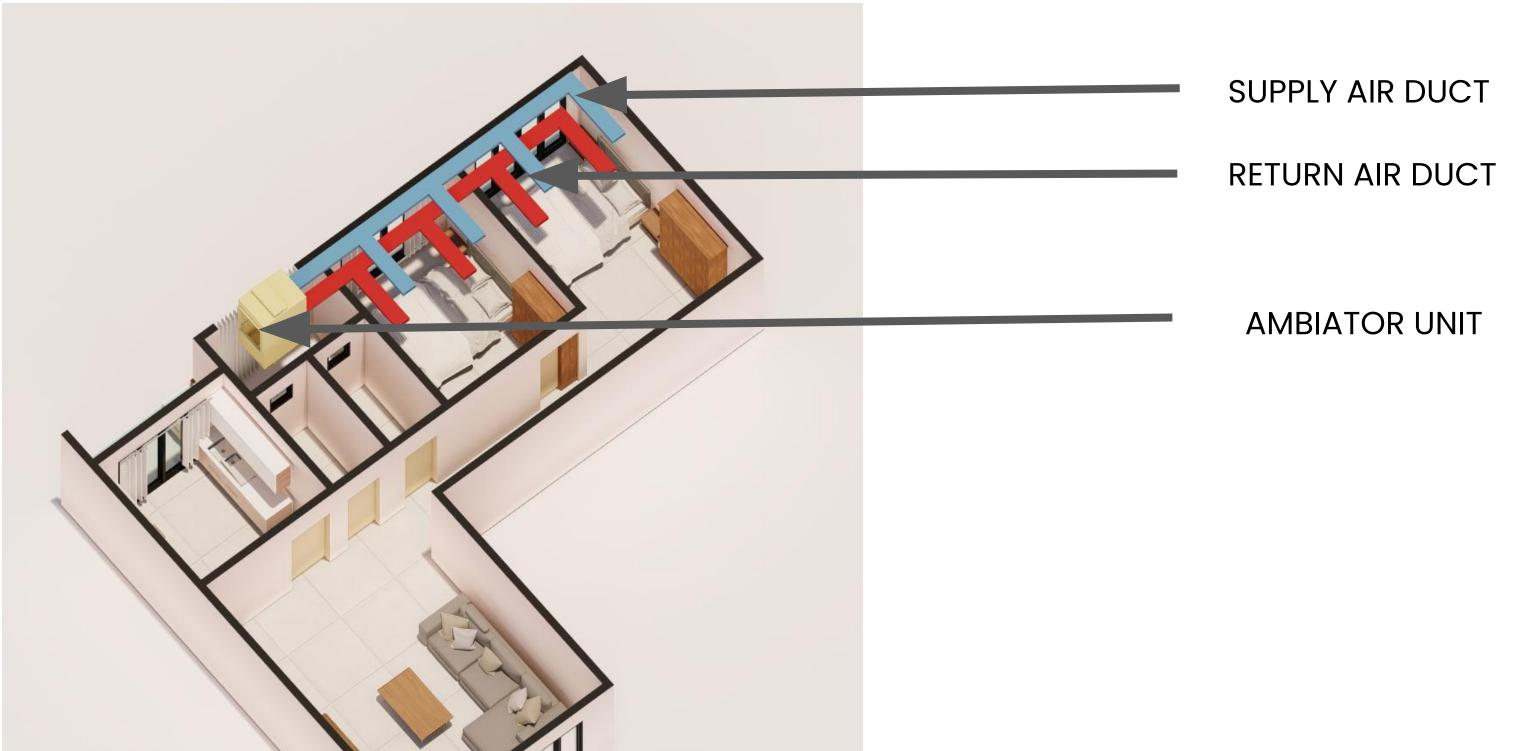
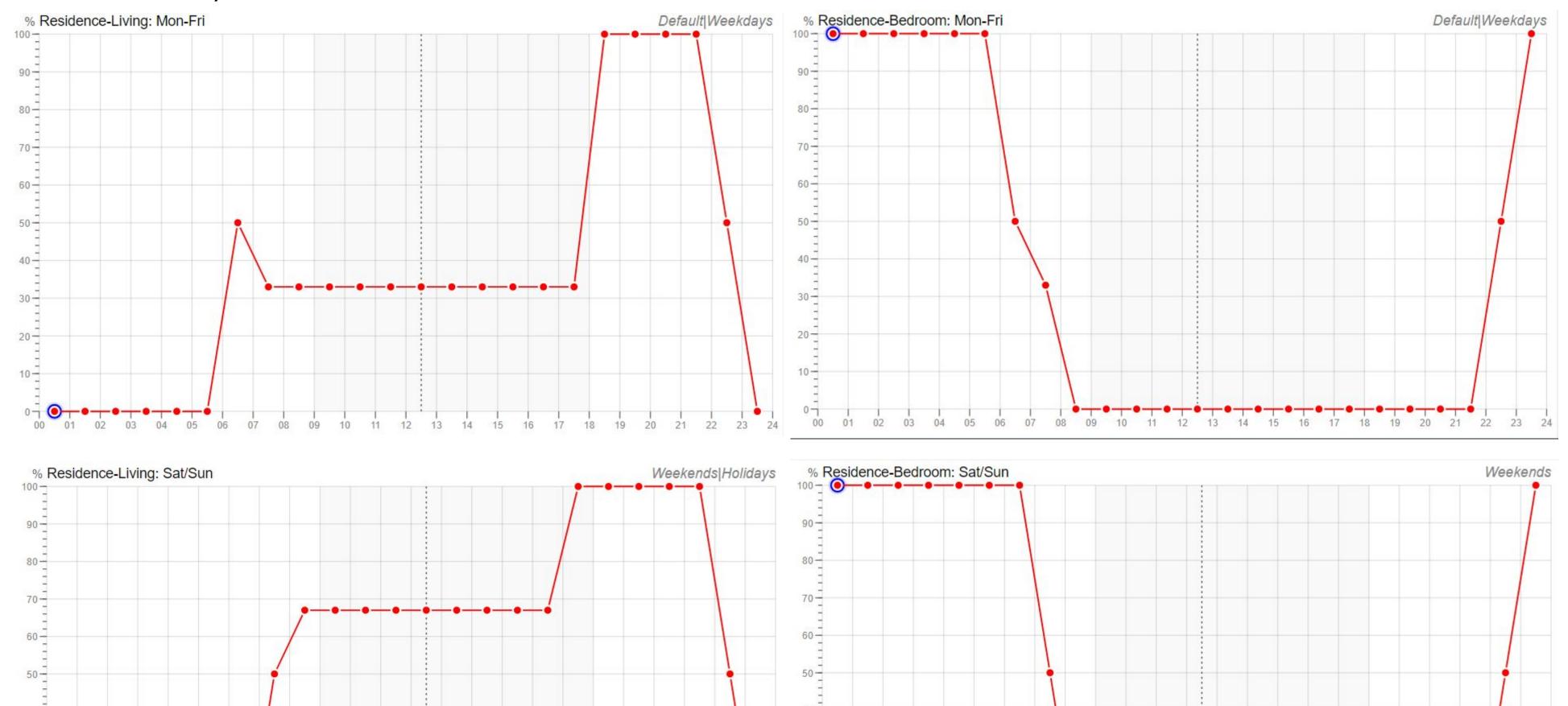
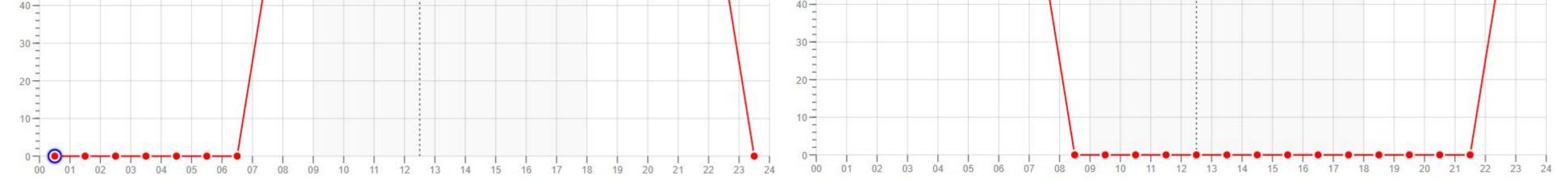
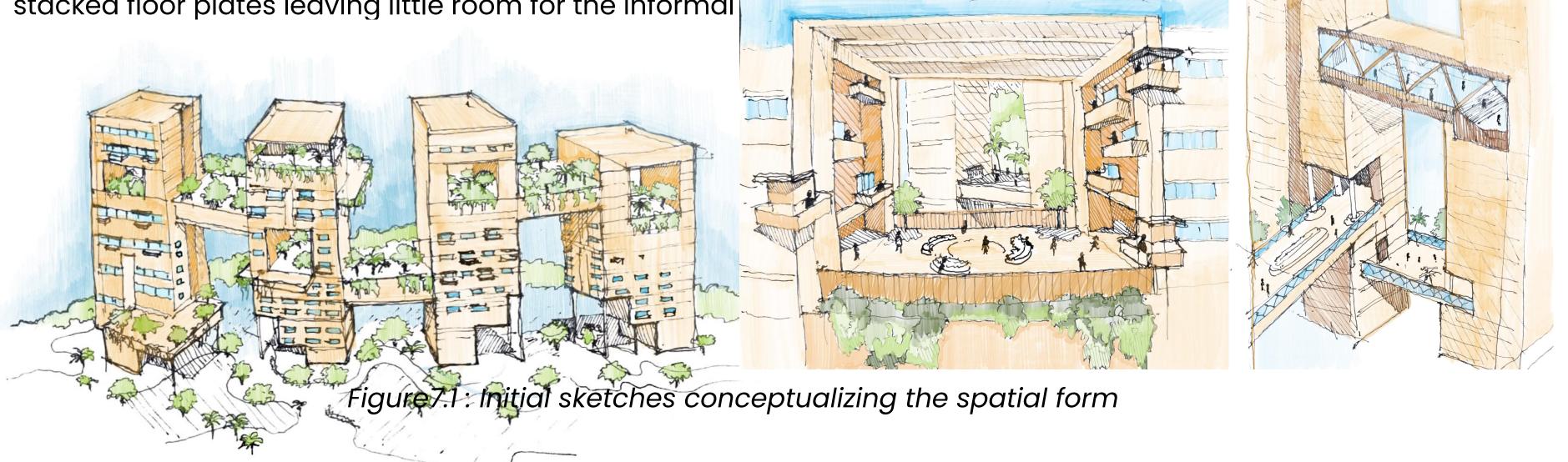




Figure 5.5 : Ambiator ducting for a 2bhk unit

• The following graphs show the operating schedule of Ambiator during peak cooling demand hours, i.e., peak summer days.

Figure 5.6 : Operating Schedule graphs for Ambiator air conditioning



Architectural design

BUILDING THROUGH NATURE

Vernacular habitats have evolved around a network of community spaces generally translated through a hierarchy of courtyards transitioning from the central square through to the public / private "otla" .

The sense of place, community and identity fostered by these archetypes has been subverted by the proliferation of stacked floor plates leaving little room for the informal

The extension of the street and garden into the high rise towers is the guiding principle behind the development of the building form.

• SITE PLANNING

- 1. SITE ENTRANCE
- 2. EXIT
- 3. VISITORS 2 WHEELER PARKING WITH ELECTRIC CHARGING POINT
- 4. 'THE URBAN LVIING ROOM'
- 5. PIEZOELECTRIC TILES
- 6. VISITORS 4 WHEELER PARKING WITH ELECTRIC CHARGING POINT
- 7. RESIDENTIAL DROP OFF POINT
- 8. VEHICULAR RAMP TOWARDS PODIUM
- 9. SWIMMING POOL
- 10. OPEN AMPHITHEATER
- 11. CYCLING TRACK
- 12. POND
- 13. CHILDRENS PLAY AREA
- 14. KITCHEN GARDEN
- 15. ECO STP
- 16. RAINWATER HARVESTING TANK
- 17. COMPOST PIT FOR WET WASTE
- 18. MRF FOR DRY WASTE

35

THE 'URBAN LIVING ROOM'

- As part of the building program, commercial spaces for shops have been provided at the street front. ${\color{black}\bullet}$
- A public plaza is proposed in front of this which can serve as a urban insert for the need of a public open lacksquarerecreational space at the neighbourhood level.
- It can host various activities such as farmer's markets, seminars on awareness (especially climate awareness), exhibitions to promote small businesses, yoga classes, etc. or just as a place for assembly or leisure.
- This asserts its space as a non-exclusive space with provisions made in terms of security to not infiltrate the
- private grounds of the project.
- The hardscape tiles selected are **piezoelectric tiles** thus helping generate power for the plaza lighting and commercial shops. Details of piezoelectric tiles in appendix.

VOIDS AS CONNECTORS

With skywalks, balconies and deck, green spaces flow through the structure, creating a healthy biophilic environment.

SDI SIRJJCOA SYNERGY

UNIT ALTERATIONS

The housing is designed in a grid of 5m x 4.4m. These houses caters to different user groups such as bachlors and family . the housing is designed as high rise structures that are faster to build and flexible to modify. The housing unit can multiply into variety of configurations and develop into an into an intimately attach balcony and open spaces.

BACHELORS HOUSING

CONVENTIONAL FAMILY HOUSING

COMBINATION OF UNITS

For Small business running of houseclothing/food/product/service/ classes

STUDIO AND 2 BHK COMBINED:



2 BHK & 3BHK COMBINED:

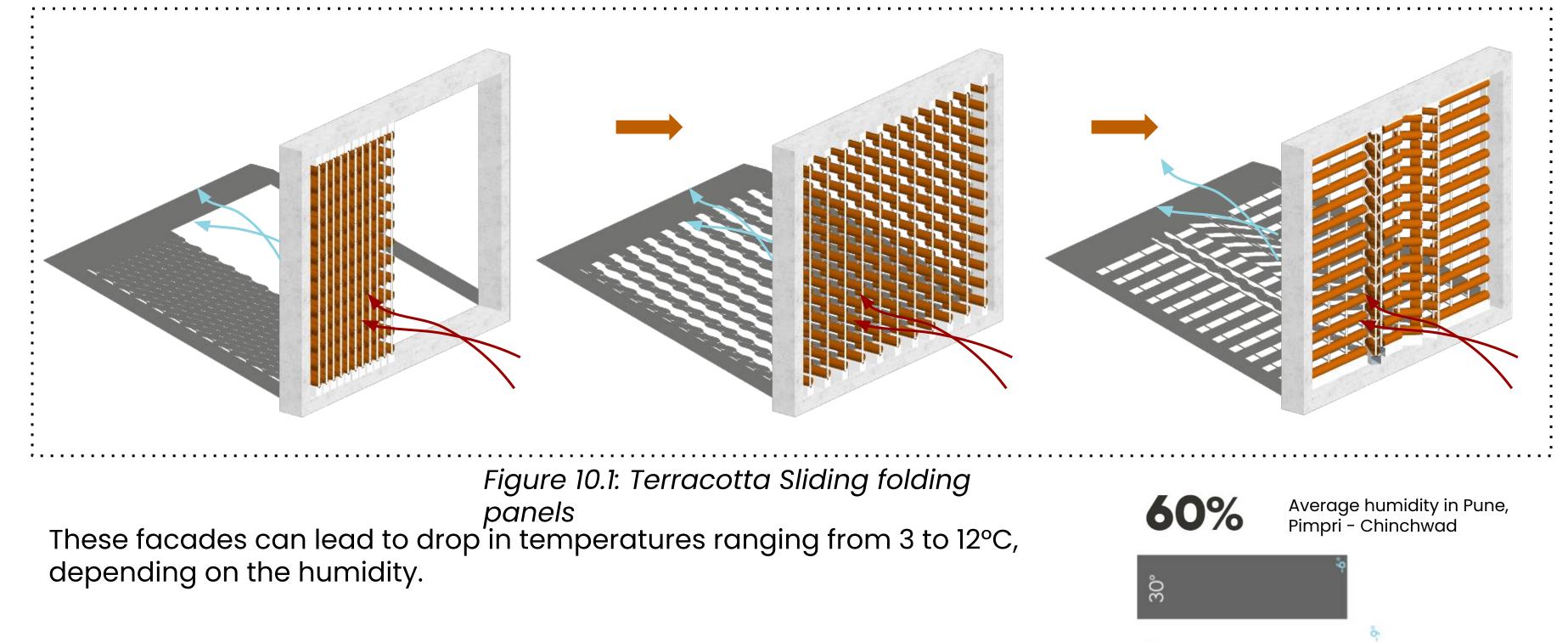
2 BHK WITH OFFICE SPACE :

Affordability

	Project Information Team:	Team Synergy							
		Multifamily Housing		Land Cost:	112	Million INR			
		Site Area (sqm)	11,306	City:	Pune				
		Built-up Area (BUA) (sqm)	12,437	State:	Maharashtra				
		Ground Coverage (Plinth Area) (sqm)	4,522						
			Baseline Esti	mate (Project basis)	Partner / SOR	Proposed Design Estimate			
S.No.	Particulars	Definition		%	Amount (INR per sqm)	Amount (Million INR)	%	Amount (INR per sqm)	
1	Land	Cost of land purchased or leased by the Project Partner	112.00	56.4%	9,006	112.00	74.2%	9,006	
2	Civil Works	Refer Item A, Civil works in Cost of construction worksheet	2.20	1.1%	177	2.60	1.7%	209	
3	Internal Works	Refer Item B, Civil works in Cost of construction worksheet	1.44	0.7%	116	1.43	0.9%	115	
4	MEP Services	Refer Item C, Civil works in Cost of construction worksheet	40.17	20.2%	3,230	8	0.0%	120	
5	Equipment & Furnishing	Refer Item D, Civil works in Cost of construction worksheet	0.01	0.0%	1	0.01	0.0%	1	
6	Landscape & Site Development	Refer Item E, Civil works in Cost of construction worksheet	0.20	0.1%	16	0.00	0.0%	0	
7	Contingency	Amount added to the total estimate for incidental and miscellaneous expenses.	2.20	1.1%	177	3.21	2.1%	258	
	TOTAL HARD COST		158.2	80%	12,722	119.3	79%	9,589	
8	Pre Operative Expenses	Cost of Permits, Licenses, Market research, Advertising etc	10.00	5.0%	804	10.00	5.0%	804	
9	Consultants	Consultant fees on a typical Project	10.00	5.0%	804	10.00	5.0%	804	
10	Interest During Construction	Interest paid on loans related to the project during construction	20.25	10.2%	1,629	11.72	5.9%	943	
12	TOTAL SOFT COST		40.3	20%	3,237	31.7	16%	2,551	
	TOTAL PROJECT COST		198.5	100%	15,959	151.0	100%	12,139	

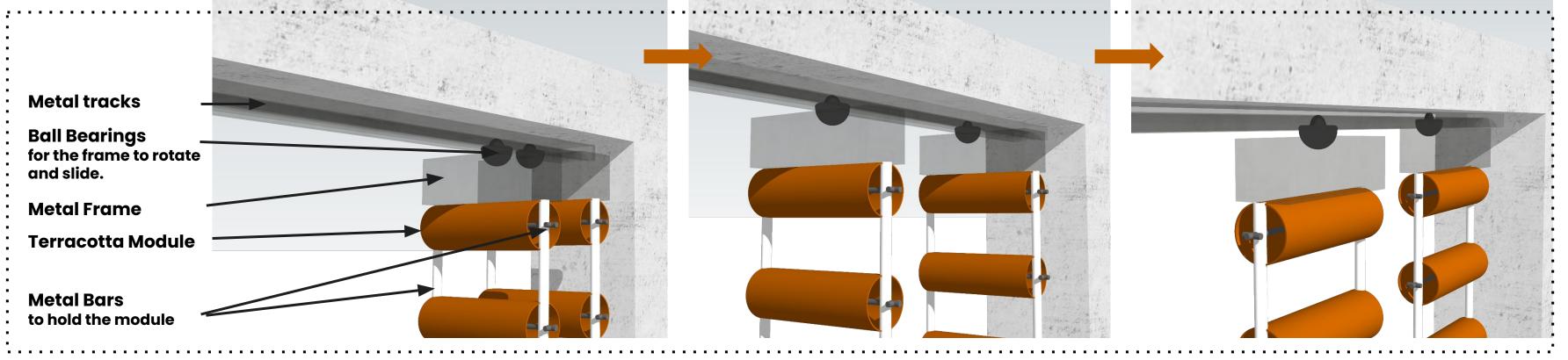
• HVAC LIFE CYCLE COSTS VS CONVENTIONAL AIR CONDITIONER

	Comparative Study - AMBIATOR vs Air Conditioner (VRV/VRF)											
Outdoor Temperature	°C		$40^{\circ} \pm 2$									
Outdoor Humidity	%		<30% ± 5									
Indoor Temperature	°C	s	26° ± 2									
Indoor humidity	%		<50% ± 5									
Capacity	TR		5 25 50 100									
Description	Units	AMBIATOR	AC (VRF/VRV)	AMBIATOR	AC (VRF/VRV)	AMBIATOR	AC (VRF/VRV)	AMBIATOR	AC (VRF/VRV)			
Connected Power	kW	1	7.5	5	37.5	10	75	20	150			
Absorbed Power	kW	0.8	6	4	30	8	60	16	120			
Water use (Avg)	Ltrs/Hr.	15		75		150		300				
Capital Cost	INR Lacs	3	5	15	25	30	50	60	100			
Power Tariff	INR/kWh	10	10	10	10	10	10	10	10			
Cooling Season	Hours	1800	1800	1800	1800	1800	1800	1800	1800			
Operating Cost/Year	INR Lacs	0.144	1.08	0.72	5.4	1.44	10.8	2.88	21.6			
CAPEX Savings	INR Lacs		2	1	10		20		40			
Annual OPEX Savings	INR Lacs	0.	0.94 4.68 9.36 18.72					3.72				
Total Savings	INR Lacs	2.	2.94 14.68 29.36 58.72									
	AMBIATOR Payback 1 Summer Season											


Cost benefits of Coolant KINETIC

Factors	Facade	Air cooler	Fan	Split AC
Spaces	Closed and open	Closed and open	Closed and open	Closed
Method	Natural + mechanical ventilation	Mechanical	Mechanical	Mechanical
Technique	Evaporative cooling	Evaporative cooling	Air movement	Refrigerant based cooling
Energy consumption	0-15%	15%	10%	10%
Humidity	Can control humidty by regulating water flow	No control on humidity	Same as RH	Can be controlled
Application	Can be applied on building facades	NA	NA	NA
Longevity	10-15 years	8-10 years	6-10 years	8-10 years
Cost	1200 - 1500 / sft	10000 per unit	1000 per unit	40000 per unit
Heat transfer	Cuts the heat entering the building	NA	NA	NA
Air quality	Open fresh air	From cooling pads	No change in surrounding air	Circulates same air inside in most cases
Aesthetic Value	Has a good aethetic value	None	None	None
Planters	Can integrate plants	NA	NA	NA
Custom based	Customisable	NA	NA	NA
Environment	Very good	To an extent	Good	Bad
Water	Smart Drip system	Continous flow	NA	NA
Refrigerant	Water	Water	NA	Chemical
Primary material	Earth and aluminum	Plastic	Metal / plastic	Plastic /copper / aluminum
Post life cycle	Back to earth	Plastic waste - landfill	Electronic waste	Plastic and HCFCs - harmful to environment

Innovation


COOLANT KINETIC

Revolutionizing the air conditioning industry, in collaboration with Ant Studio, **Coolant KINETIC** is proposed as movable external shading and insulation device. Made from local terracotta tubes, this solution is an affordable solution inspired by nature.

- A 'natural' temperature drop of **upto 15%** Capital Savings of **upto 22%**
- Reducing our **Carbon Footprint**
- Our air is Net Fresh

Industry Partner:

35°

40°

Figure 10.2: Module working

Beating the heat with Low-Tech Terracotta Cooling System.

The cooling system consists of inner and outer surfaces embedded on a metal framework. Water passes through the terracotta tubes, facilitating evaporative cooling.

We can use drip system to keep the material moist for a longer period of time and the same water collected at the bottom tray can be pumped up to reuse.

Air is cooled when it passes through the terracotta tubes and comes out and stays cool like water in an earthen pot.

This installation also gives a beautiful cascade effect when drenched in water.

Ant Studio

The humid clay traps some heat the air and the surrounding air gets cooled down to around 6-10° C due to the process of evaporative cooling.

Figure 10.3: Terracotta System

Cost benefits and energy offset analysis is detailed under Energy Performance and Affordability contests.

AN INTERACTIVE AND MONITORING APP

MOTIVES:

- TO CREATE AWARENESS ABOUT ENERGY AND, WATER CONSERVATION AND WASTE MANAGEMENT AND THEIR IMPACT ON THE CLIMATE .
- TO EDUCATE THEM ABOUT THE DIFFERENT WAYS OF CONSERVATION ON THEIR SCALE
- TO CREATE A COMMUNITY WHERE PEOPLE INTERACT WITH WITH EACH OTHER REGARDING THEIR WORK ON CONSERVATION AND DIFFERENT ACTIVITIES.

Data access in India is increasingly cheaper and afoordable. A guidance app proposed to guide the occupants towards a sustainable and healthy lifestyle. The app will guide the users within the five aspects of lifestyle for environment i.e. Energy, Water, Waste, Air and Greenery. The app educates why and how should they conserve the resources at a small scale and give them a daily record of how they are doing . It will be based on a point mark system throughout the community for social interaction among the respective category

An app which involves you In a community where people compete with each other to develop a sustainable environment . At the same time interacting , and educating each other.

Figure: App Mockup Screen

Me

Energy

60

Vishal D

Amruta G

Water

50

Ø

•••

Omkar V

Ĵ

Waste

87

Air

65

The users are given points on the basis of their daily energy consumption, waste segregation, water conservation ,etc . and eventually they get rewards and rankings.

Chat section and Dashboard

Current Active users and their Daily stories

Greenery

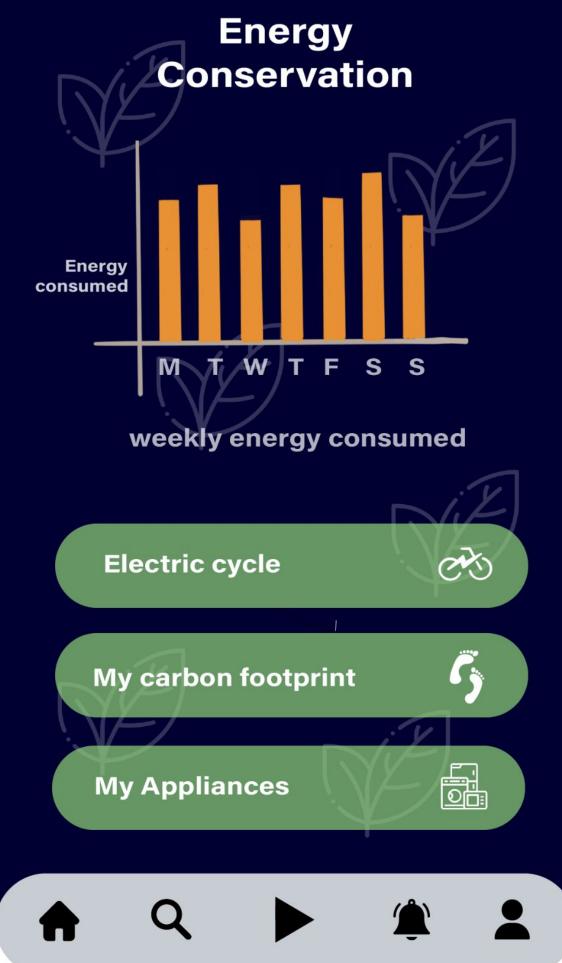
80

Rankings, Challenges and Rewards for appropriately following the lifestyle for environment

> Sections for tracking Energy consumed, water saving, waste management, Air quality and green environment

Featuring options for exploring around, videos, Notifications and profile

Figure: App UI and Specifications


40

SPECIFICATIONS

- Energy conservation- monitoring energy consumption on daily basis
- Waste Management monitoring amount generated and how it is segregated and treated on user basis.
- Water conservation- monitoring water consumption and saved on daily basis .
- Carbon footprint monitoring

Calculating data from different appliances and presenting it in the form of point based data of the user

ENERGY **CONSERVATION**

Daily Community Challenges under saving energy, waste

WASTE **CONSERVATION**

TRACKING

segregation, water saving ,etc. Also includes challenges uploaded on the Government Website Links.

TRACKING

Health and well-being

With the poor air quality prevalent in Pune, it was essential to look at natural ventilation methodologies to accommodate fresh air as well as healthy comfortable environment. This was done by using the IMAC tool to first assess the annual comfort hours for Pune and indicating suggestive modes of operation at a passive level.

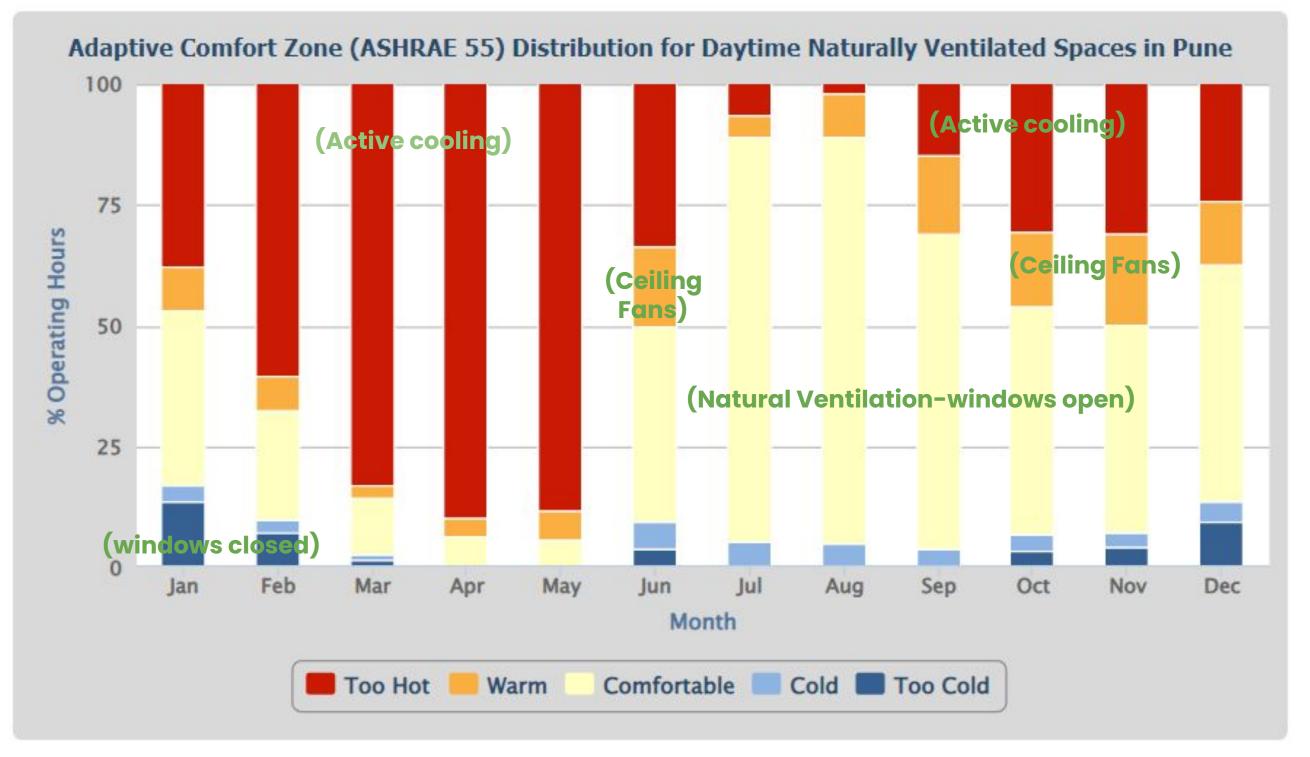
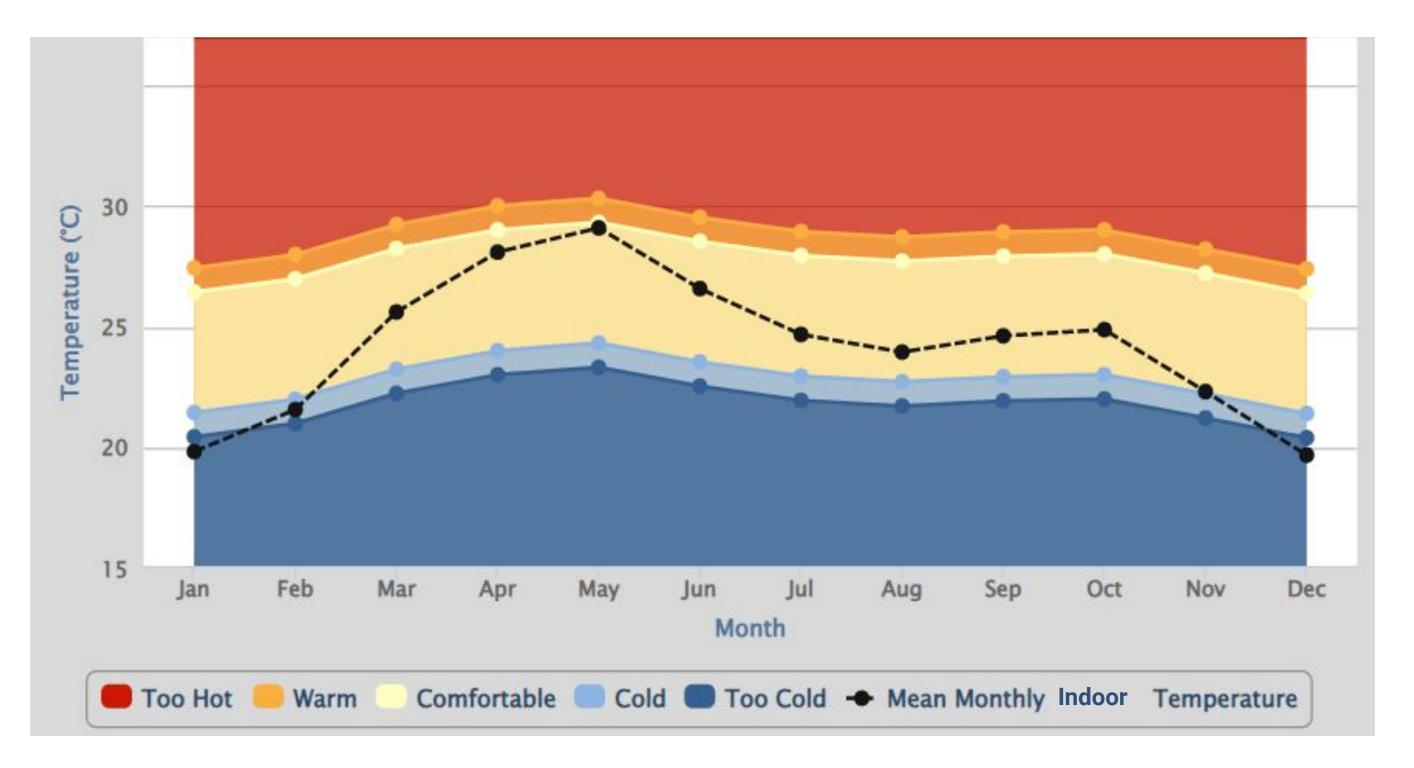



Figure 11.1: ASHRAE 55 Comfort Distribution for Annual Daytime Hours in Pune - With suggestive operations annotated

NATURAL VENTILATION - WINDOWS OPEN WITH COOLANT KINETIC

Coolant KINETIC is designed in such a way to act as a natural air conditioner. As shown, it helps achieve the comfort temperatures within the IMAC suggested band.

The warm air is taken through the terracotta tubes cooling it and also filtering it in the process. The tubes can also accommodate plantations inside them, helping in filtering the air further.

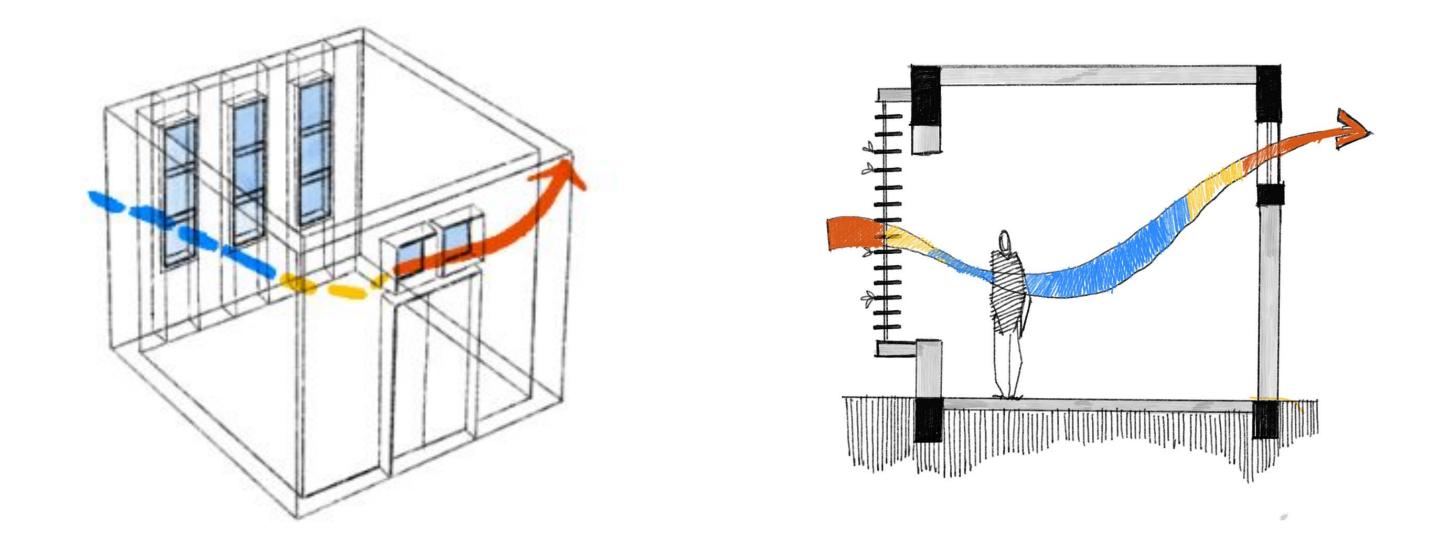
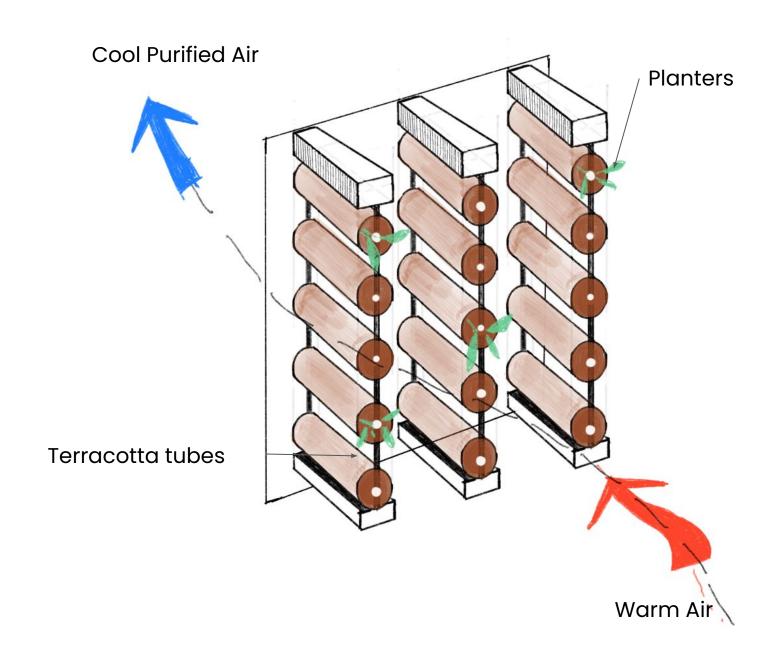


Figure 11.2: Graph showing comfort temperatures achieved using Coolant KINETIC



• PASSIVE COOLING THROUGH CROSS VENTILATION

Windows provided above doors to accommodate proper cross ventilation.

• GETTING INSPIRATION FROM NATURE TO PURIFY AIR AND PROMOTE WELL-BEING

Coolant KINETIC blocks the direct suns rays, reducing thermal gain and planters of air purifying species accommodated inside tubes purify air. Details of system provided under *Innovation*.

Further, green spaces have been interspersed throughout

Figure 11.3: Warm air cooled and purified as it passes through the Coolant KINETIC panels

the building to promote well-being.

43

MECHANICAL VENTILATION WITH AMBIATOR

- With the rising temperatures due to climate change, passive cooling might not suffice cooling needs in the future. Hence, bioclimatic air conditioning in the form of Ambiator can be employed by individual tenants.
- Decentralized central cooling for apartments in hot and dry climates using AMBIATOR technology offers
 numerous benefits for high rise residential buildings, particularly in terms of energy efficiency, ventilation, and
 indoor air quality (IAQ).

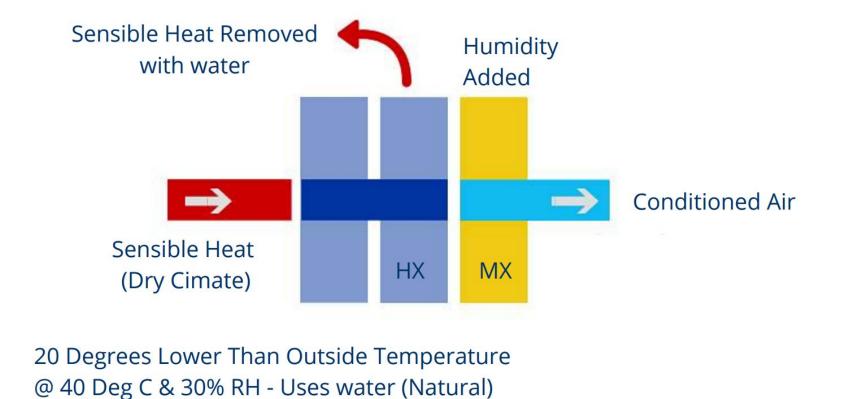


Figure 11.4 : Schematic representation of air flow through Ambiator

X Does not comply with ASHRAE Standard 55-2020

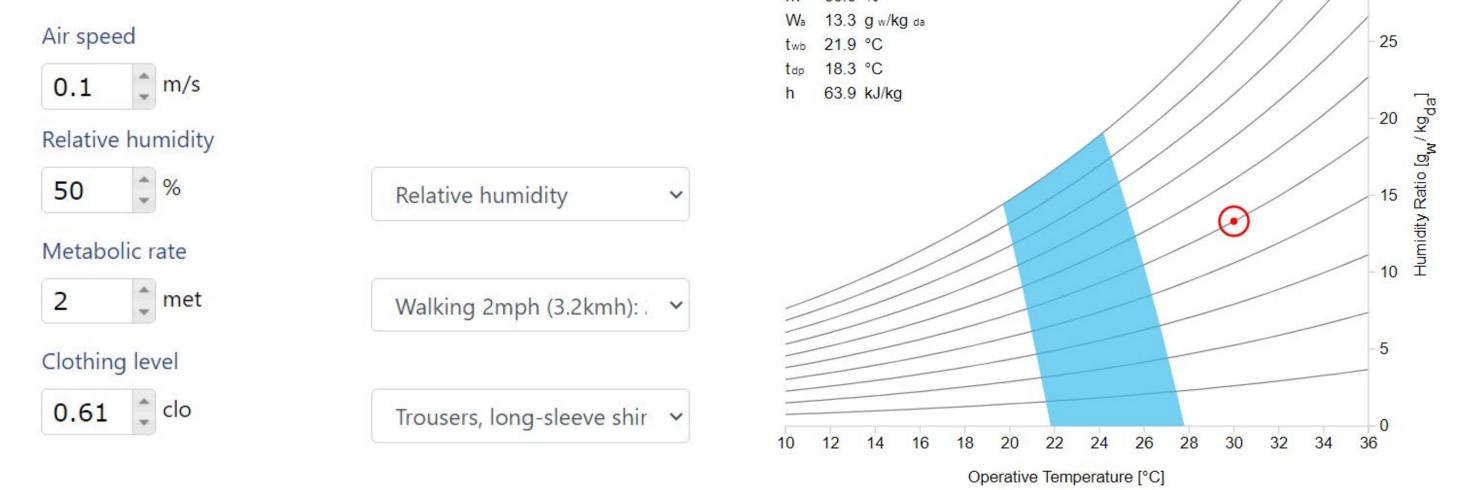
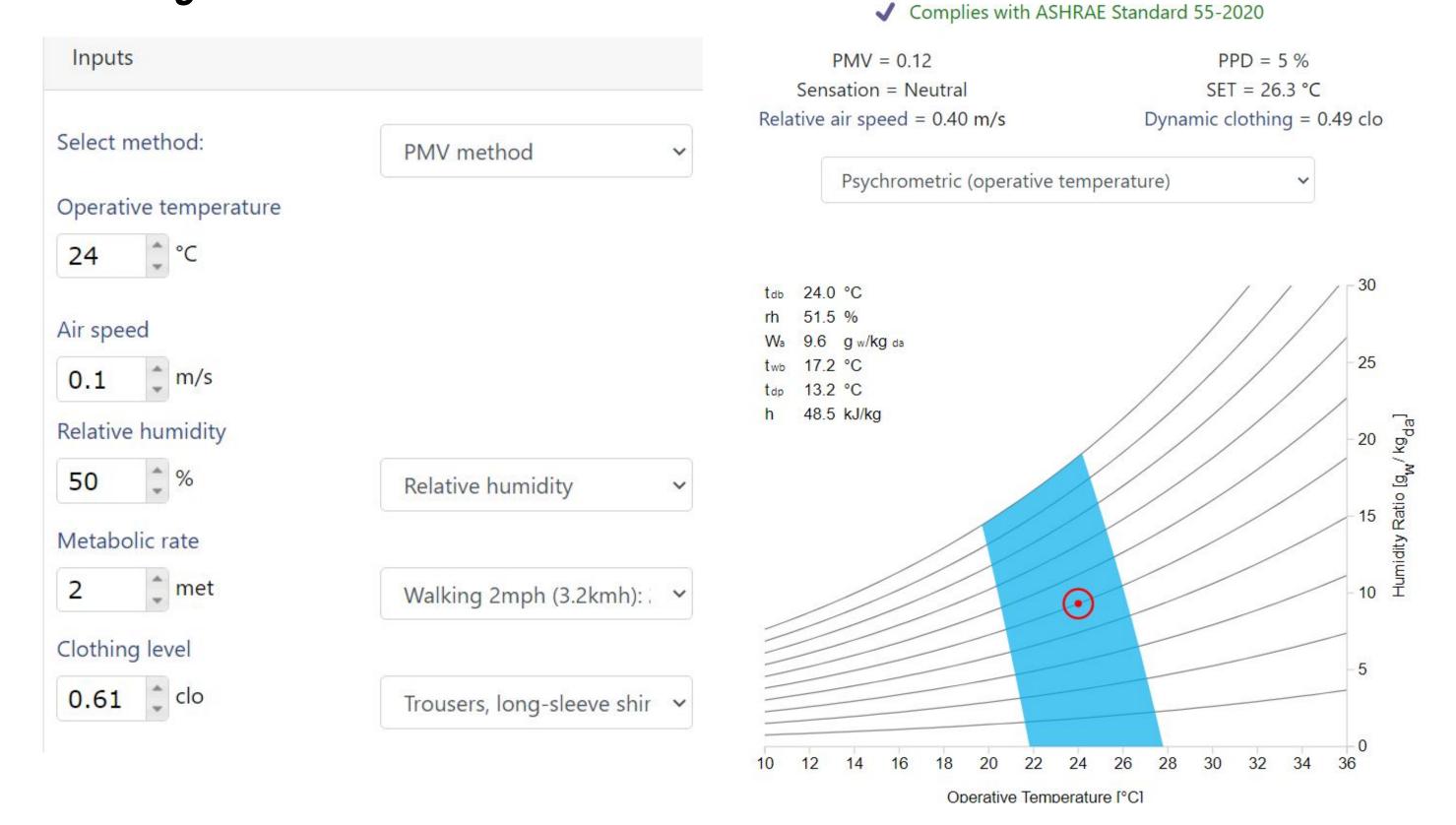
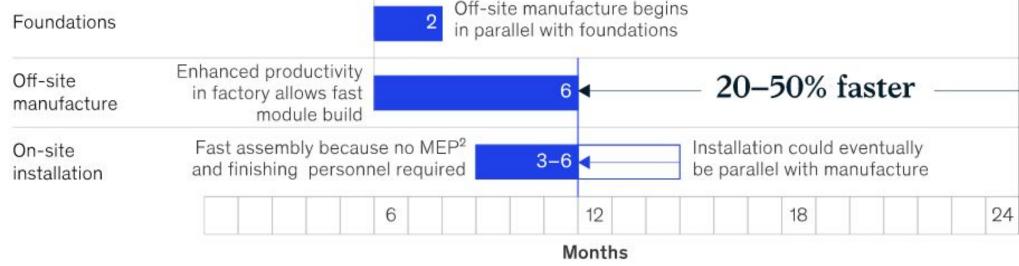
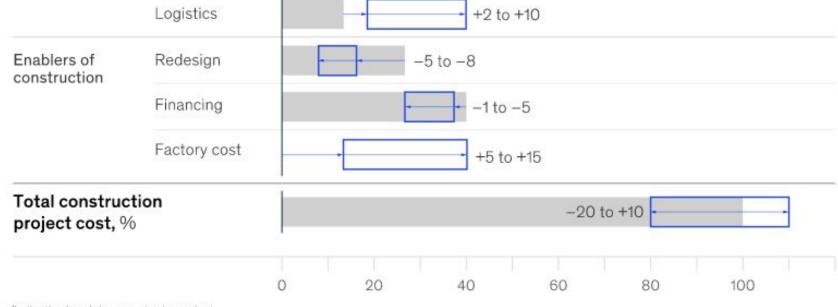



Figure 11.5 : Psychometric chart showing operative temperature **without Ambiator air** conditioning

Figure 11.6 : Psychometric chart showing operative temperature with Ambiator air conditioning




Value Proposition

- This project while being Net-Zero energy, Net-Zero water and Net-Zero waste, helps to reduce operational costs.
- The concept of biophilia promotes longevity of community
- Socio-Cultural sustainability makes it a attractive buy for customers, especially with the flexibility options
 provided.
- Waste diversion from landfill has been focused on and as elaborated under Resilience addresses key issue
 of solid waste management persisting in Pune.
- Prefabricated construction technique implemented which as researched has the following benefits.

Traditional	Months 12 18 24	cost increas	opportunity fo ses if labor say struction cost, ¹ %	vings are o	outweighed	by logistics	or material	ls costs.
Planning and design	6	Traditional cons	truction cost	Observed range	of offsite savings/	/cost		
				0	10	20	30	40
Foundations	2	Preconstruction phase	Planning	n/a				
On-site construction	12		Design		0 to +2			
Construction	Redesign is frequent in traditional		Site preliminaries	s E	• −2 to −5			
overrun ¹	construction, but very rare in offsite	Construction phase	Substructure		n/a			
3-D volumetric		3-0790386360	Materials		-10 to +1	15 -		
Planning	More up-front design for early projects, but design		On-site labor		–10 to –25 🔸		•	
and design	5–7 < phase will shorten as designs are repeated		Off-site labor		- +5	5 to +15		

Example apartment-project-construction duration, traditional vs off-site 3-D volumetric, months

¹Overruns of 25–50% of projected construction duration are common. ²Mechanical, electrical, and plumbing. Source: Case studies; interviews; McKinsey analysis

Indicative breakdown: varies by project.

Source: US Federal Highway Administration; McKinsey Capital Projects & Infrastructure

The project redefines and revolutionises the mass housing scenarios in the Pimpri-Chinchwad area and is a pride for its residents.

Appendix

Area Programme

A) AREA STATEMENT		SQ.M.	
1. Area of plot (Minimum area of a,b,c, to be considered)		12613.49	
(a) As per ownership documents (PRC extract)		13191.62	
(b) as per measurement *heet		12613.49	
(c) as per site		12613.49	
2. Deduction for			
(a) Proposed D.P./ D.P. Road widening Area/Service Road/ Highway Widening		51.05	
(b) Any D.P. Reservation area			
(c) Other area			
TOTAL (a+b+c)			
3. Balance area of plot (1-2		12562.44	
4. Amenity Space (if applicable)			
(a) Required		1256.24	
(b) Adjustment of 2(b), if ny			
(c) Balance Proposed		1256.24	
5. Net plot area (3-4 (c))		11306.2	
6. Recreational open space (if applicable)			
(a) Required		1130.62	
(b) Proposed		1130.62	
7. Internal Road area			
8, Plotable area (if applicable)			
9. Built up area with reference to Basic F .S.I. as per front road width		12436.82	
(Sr. No. 5xbasic FSI 1.10)	(11306.20 x 1.10)		
10. Addition of FSI on of premium	(12613.49 x 0.50)	0	
(a)Maximum permissible premium FSI - based on road width / TOD Zone.		0	
(b) Proposed FSI on payment of premium		0	
11. In-situ FSI / TDR loading			
(a)in-situ area against D.P. road [2.0 x sr. no. 2 (a)I,if any	(51.05 x 2.05)	0	
(b)in-situ area against amenity space if handed over [2.00 orl.85 x sr. no. 4 (b)and /or(c)I		0	
(c)TDR area (As per page no 112) Max permissible TDR 0.90		0	
(d) Total in-situ / TDR loading proposed (11 (a)+(b)+(c)		0	
12. Additional FSI area under Chapter No. 7 (5% OF basic FSI green building FSI)		0	
13. Total entitlement of FSI in the proposal		12436.82	
(a) [9 + IO(b)+11 (d)] or whichever is applicable.			
(al) Deduction Built-up area / FSI/ Utilizes area FSI to be retained as per old DC Rules			
(a2) Balance entitlementfor Ancillary Area (a - al)			
(b) Ancillary Area FSI upto 60% or 80% with payment cf charges.		7562.32	
(c) Total entitlement (a+b)		19999.14	
14. Maximum utilization limit of F.S.I. (building potential) Permissible as per Road width (as per Regulation No. 6.1 or 6.2 or 6.3 or 6.4 as applicable) x 1.6 or 1.8) (9+10(a) - 11 - 13(a))			
15. Total Built-up Area in proposal.(excluding area at Sr.No.17 b)			
(a) Existing Built-up Area		0	
(b) Old sanction Built-up Area		0	
(c) Proposed Built-up Area (as per 'P-line')		19964.78	
(d) Total (a+b+c)		19964.78	
16. F vs.). Consumed (15/13) (should not be more than serial No.14 above.)		1	
17. Area for Inclusive Housing, if any			
(a) Required (20% of Sr.No.9)		NA	
(b) Proposed		0	

Climate Analysis

- The PCMC area has an invigorating climate throughout the year, with high altitude, moderate rainfall and a green cover.
- In this period, PCMC witnessed an average annual rainfall of 700-800 mm.
- The maximum relative humidity during the rainy season is 70-80% and falls as low as 30% on summer afternoons.
- This is as close to a perfect climactic setup as one can achieve anywhere in Maharashtra, and is one of the main reasons why so many people from various regions choose to settle down here.

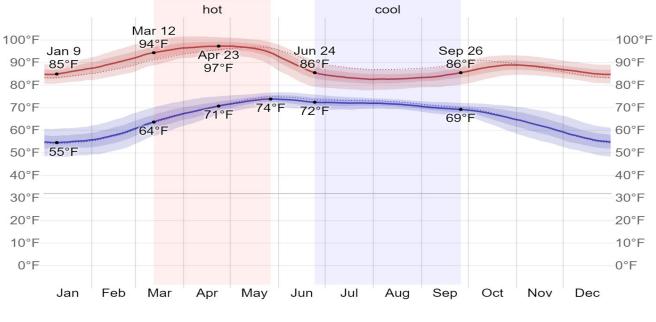
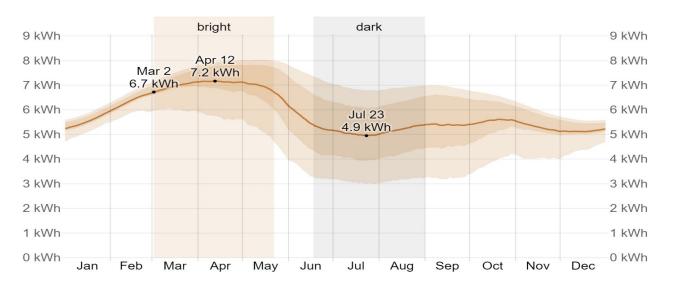
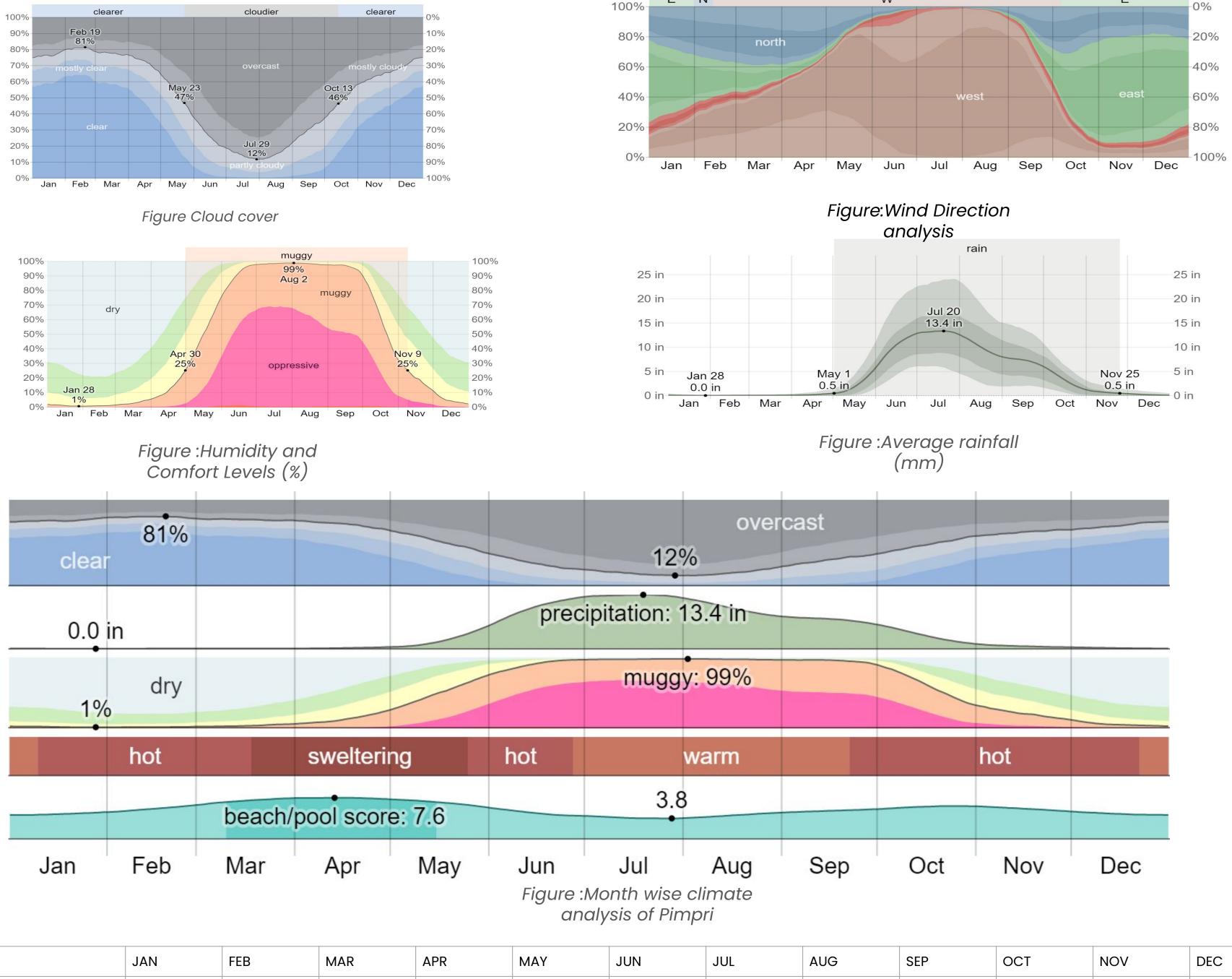
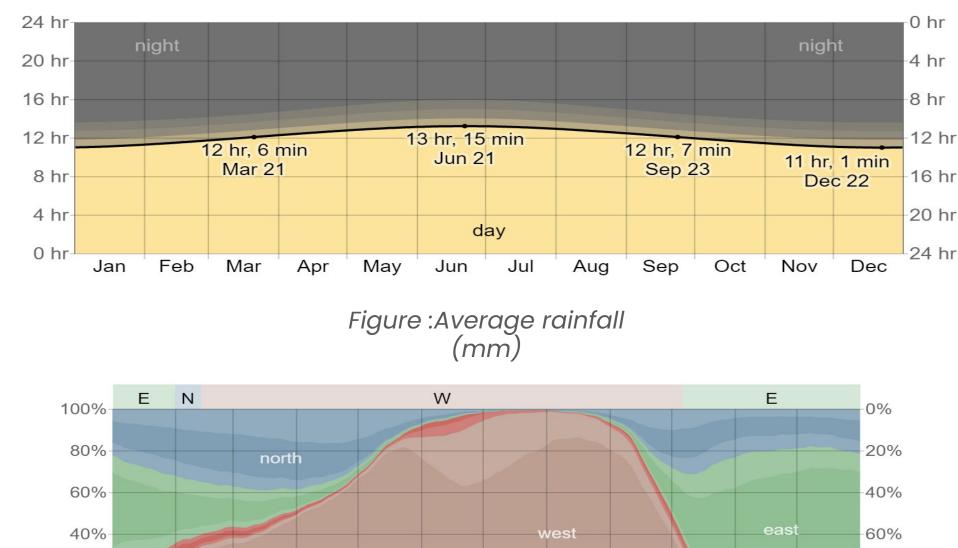



Figure:Average high and low temperature (mm)

TEMPERATURE


21.7


23.7

28.6

26.5

27.9

HUMIDITY	1%	3%	6%	25%	74%	93%	96%	99%	95%	55%	25%	6%
RAINFALL	lmm	2mm	3mm	10mm	26mm	247mm	340mm	270mm	189mm	81mm	26mm	5mm
CLOUD COVER												
WIND SPEED	1.7km\hr	2.2	2.9	3.5	3.5	2.9	2.5	3	3	2	2.5	2.5
SUN HOUR	10	10	11	11	10	6	4	4	5	9	10	10

24.9

23.1

22.8

23.2

24.2

48

23.3

21.8

Base case energy calculations

ENERGY CALCULATION FOR INDIVIDUAL FLOOR

In this segment, we have calculated the net energy that will be required for the building in a year and the base case EPI.

Appliances	Units/V	v x	Count	=	Load
Bulb	25W ~	25 X	432	=	10800
Ceiling Fan	70W ~	70 X	32	-	2240
Table Fan	40W ~	40 X	10	=	400
TV	250W ~	250 X	7	=	1750
Air Conditioner	2TON ~	2000 X	15	=	30000
Washing Machine	700W ~	700 X	7	=	4900
Water Pump	-Select- ~	0 X		=	0
Geyser	3000W ~	3000 X	10	=	30000
Heater	1500W ~	1500 X	7	=	10500
Refrigerator	350litres ∽	200 X	7	=	1400
Electric Iron	1000W ~	1000 X	7	=	7000
Mixer / Grinder	500W ~	500 X	7	=	3500
PC / Laptop	250W ~	250 X	10	=	2500
Microwave Oven	5000W ~	5000 X	7	=	35000
Radio	50W ~	50 X	2	=	100
Stove	1000W ~	1000 X	7	=	7000
Cloth Drier	200W ~	200 X	7	=	1400
Electric Clock	5W ~	5 X	7	=	35
Cooking Range	5000W ~	5000 X	7	=	35000

For first 14 floors:

Energy consumed in a day $= 165.7 \times 14$ = 2319.8 kWh

For next 5 floors:

Energy consumed in a day $= 115.5 \times 5$

= 577.5 kWh

Total energy consumption per year: = (2319.8 + 577.5) 365

- = 10,57,514.5 kWh

Table T.19 : Electrical load calculation per day per floor

ENERGY CALCULATION FOR COMMON AREAS

Common amenities = 60.8 kWh/day **Common equipment:** Elevators = 240 kWh/day $Pumps = 0.8 \, kWh/day$ Total annual consumption of energy in common areas = 365 (60.8 + 240 + 0.8) $= 8,62,623 \, kWh/yr$

TOTAL EPI CALCULATION:

Total energy consumed in a year = 10,57,514.5 + 8,62,623

- $= 14,23,098.5 \, kWh/yr$
- **EPI** = Total energy consumed per year / floor area
 - = 19,20,137.52 / 19964
 - $= 96.18 \, kWh/yr/m2$

Sustainable Energy Sources

PIEZOELECTRICITY INSTALLATION

1. The simplest way is to install them in the floor or steps of the building, where there is a lot of foot traffic. When people walk, the mechanical stress created by their weight is converted into electrical energy.

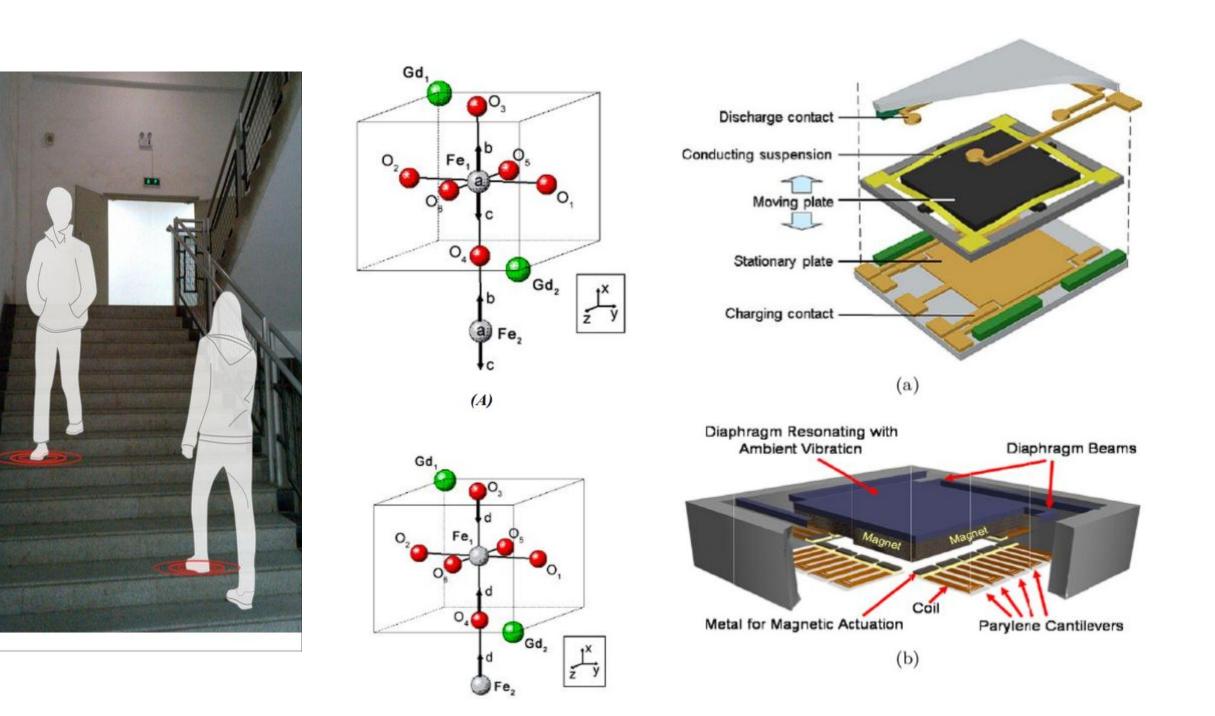


Figure :Month wise climate analysis of Pimpri

It has recently gained attention as a potential source of sustainable

Effective Use

2.

Attaching them to the building's

- structural elements, such as columns or beams. The mechanical stress created by the building's vibrations or wind can be converted into electrical energy.
- Lighting: The energy generated by the piezoelectric generator can be used to power the building's lighting systems. LED lights, which consume less energy than traditional lighting systems.
- Elevators: Piezoelectric generators can be installed in elevators to generate energy from the mechanical stress created by their movement.
- HVAC Systems: Piezoelectric generators can also be installed in HVAC systems to generate energy from the mechanical stress created by the air moving through the system. This energy can be used to power the HVAC system's electrical systems,
- Security Systems: Piezoelectric generators can

energy, particularly in high-rise buildings, there is a large amount of mechanical stress caused by vibrations and foot traffic. we can explore the feasibility of installing a piezoelectric generator in a high-rise building for renewable energy resource and identify areas where it can be used effectively to achieve sustainable energy goals.

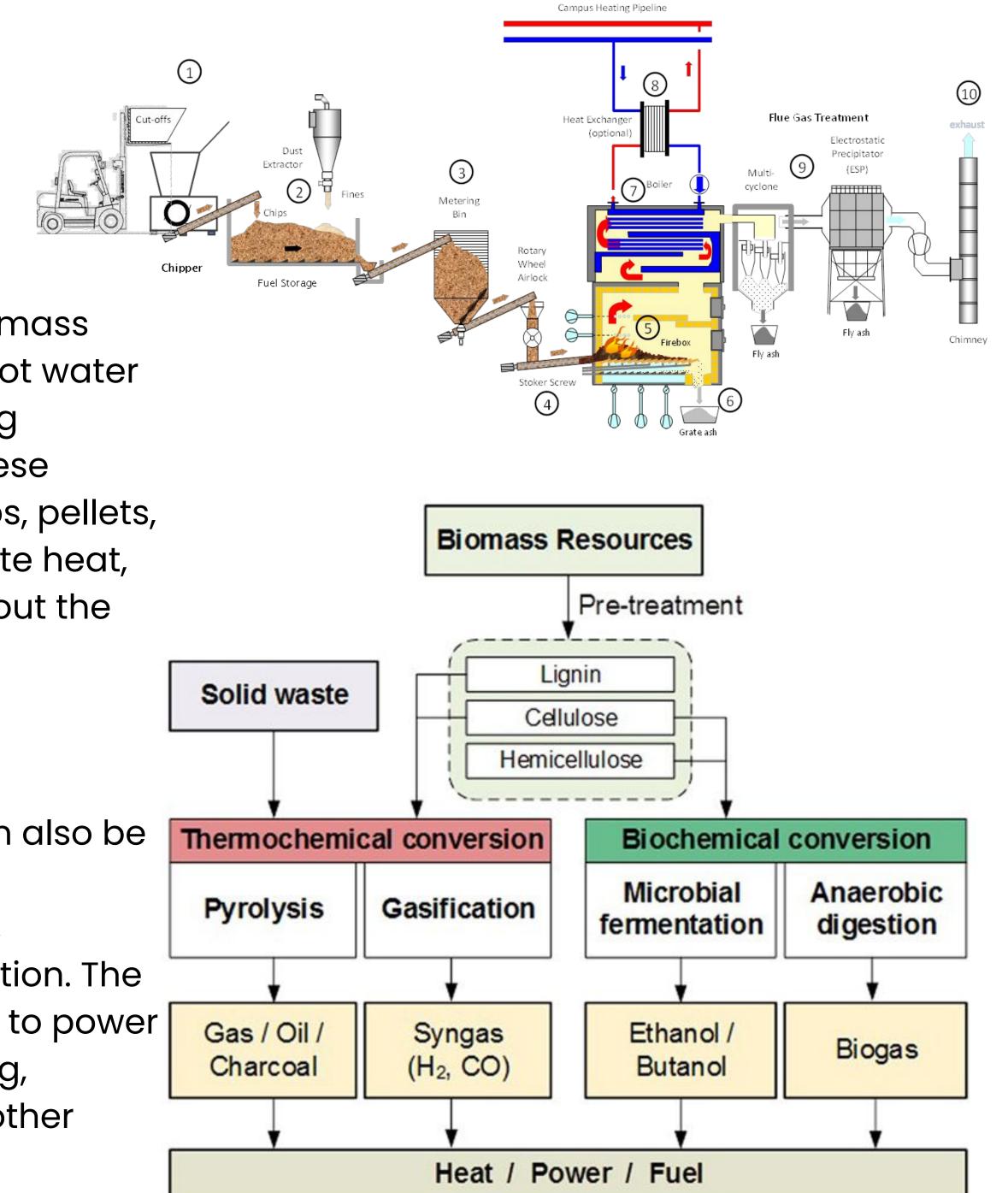
6	600	
	600	2.4
12	1200	2.4
18	1800	2.4
25	2500	2.5
	18 25	18 1800 25 2500

Figure :Month wise climate analysis of Pimpri

50

be used to power security systems, such as cameras and sensors, in the building.

Alternate examples on Sustainable Energy Resourses


BIOMASS ENERGY

З.

4.

Biomass energy can be utilized in various areas within a high-rise building complex, such as:

1. Heating and Cooling Systems: Biomass boilers can be used to generate hot water and steam for heating and cooling systems in high-rise buildings. These boilers can be fuel with wood chips, pellets, or other organic matter to generate heat, which can be distributed throughout the building using pipes or ducts

2. Electricity Generation:Biomass can also be used to generate electricity using technologies such as gasification, combustion, and anaerobic digestion. The electricity generated can be used to power various systems within the building, including lighting, elevators, and other electrical appliances.

> Figure :Month wise climate analysis of Pimpri

- Waste Management:Food waste and other organic waste generated within the high-rise building complex can be used as a feedstock for biomass energy production. This can help reduce the amount of waste sent to landfills and also provide a sustainable source of energy.
- Government incentives and Subsidies for Biomass Energy Production

The Ministry of New and Renewable Energy (MNRE) provides Central Financial Assistance (CFA) in the form of capital subsidy and financial incentives to the biomass energy projects in India. CFA is allotted to the projects on the basis of installed capacity, energy generation mode and its application etc. Financial support will be made available selectively through a transparent and competitive procedure.

SDI SIRJJCOA SYNERGY

51

Landscaping Biomass energy can be derived from the trimming and pruning of trees and other vegetation within the building complex. This can help reduce the amount of waste generated and provide a sustainable source of energy for the building.

Technical Specifications of Solar Panels

Descriptions

Brand	LOOM SOLAR
Output Power	445 Watts
Space Requirement	24 sq. feet
Operating Voltage	24 Volt
Panel Technology	Mono PERC
Manufacturer warranty	10 year on manufacturing defects
Performance Warranty	25 Years
	6th Generation Monocrystalline Solar Cell (PID FREE)

from Gormany

Technical

wattage (Wp)	445 watts	
voltage at max power	42 volts	
current at max power	10. 5 amps	
open-circuit voltage	49 volts	
short circuit current	11 amps	

Standard Panel **W** • ••••• Shark

Advanced Cell Connection Technology

Full-black variant is a design masterpiece and the most elgant feature for your home.

Stylish looks thanks to thin, barelyvisible wires and uniformly blackcolored cells.

Improved Performance When Shaded

Reduces internal resistance for more power and reliability

Continued energy production in shaded conditions means you see higher energy yields

Super High Efficiency Module

It's high power density (217 watts/m²) helps to get more from limited spaces.

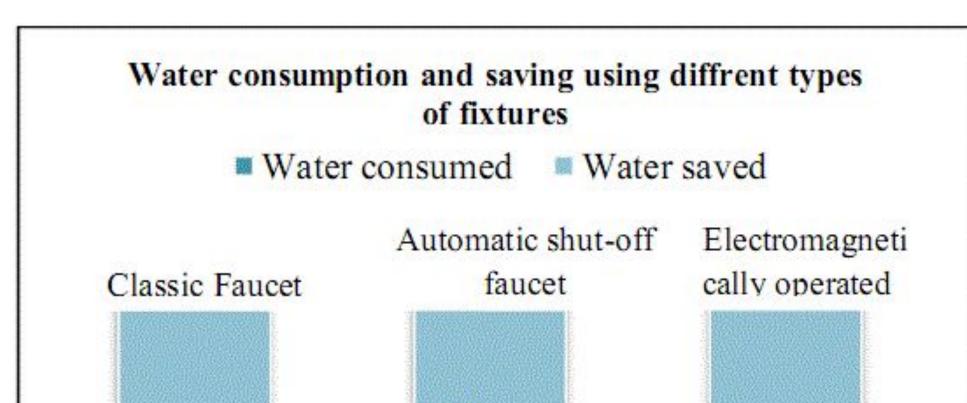
Leading temprature coefficient means

Number of Cells	144	Standard Shark	more energy as temprature rises. 20% more power on your roof compare to conventional panels.
SHIPPING DETAILS		Super Strong Frame	
147 · 17		Support bars protect cells and glass from bending under load	
Weight	24 Kg	Panels maintain high performance levels over the installation lifetime	Standard panel Shark
Dimensions L x W x H	2063 x 1026 x 35 mm	40/35 mm frame height makes panel easier to handle	

Figure: Technical specifications of solar panel

Project	Project Information							
		Team Synergy Multifamily Housing		Land Cost:	112	Million INR		
		Site Area (sqm)	11,306	City:	Pune			
5		Built-up Area (BUA) (sqm) Ground Coverage (Plinth Area) (sqm)	12,437 4,522	State:	Maharashtra			
			Baseline Estin	nate (Project basis)	Partner / SOR	Proposed	l Design Estir	mate
S.No.	Particulars	Definition		%	Amount (INR per sqm)	Amount (Million INR)	%	Amount (INR per sqm)
1	Land	Cost of land purchased or leased by the Project Partner	112.00	56.4%	9,006	112.00	74.2%	9,006
2	Civil Works	Refer Item A, Civil works in Cost of construction worksheet	2.20	1.1%	177	2.60	1.7%	209
3	Internal Works	Refer Item B, Civil works in Cost of construction worksheet	1.44	0.7%	116	1.43	0.9%	115
4	MEP Services	Refer Item C, Civil works in Cost of construction worksheet	40.17	20.2%	3,230		0.0%	121
5	Equipment & Furnishing	Refer Item D, Civil works in Cost of construction worksheet	0.01	0.0%	1	0.01	0.0%	1
6	Landscape & Site Development	Refer Item E, Civil works in Cost of construction worksheet	0.20	0.1%	16	0.00	0.0%	0
7	Contingency	Amount added to the total estimate for incidental and miscellaneous expenses.	2.20	1.1%	177	3.21	2.1%	258
	TOTAL HARD COST		158.2	80%	12,722	119.3	79%	9,589
8	Pre Operative Expenses	Cost of Permits, Licenses, Market research, Advertising etc	10.00	5.0%	804	10.00	5.0%	804
9	Consultants	Consultant fees on a typical Project	10.00	5.0%	804	10.00	5.0%	804
10	Interest During Construction	Interest paid on loans related to the project during construction	20.25	10.2%	1,629	11.72	5.9%	943
	TOTAL SOFT COST		40.3	20%	3,237	31.7	16%	2,551
	TOTAL PROJECT COST		198.5	100%	15,959	151.0	100%	12,139

Table T. : Summary of Cost Estimation


Summary of Embodied Carbon Emissions

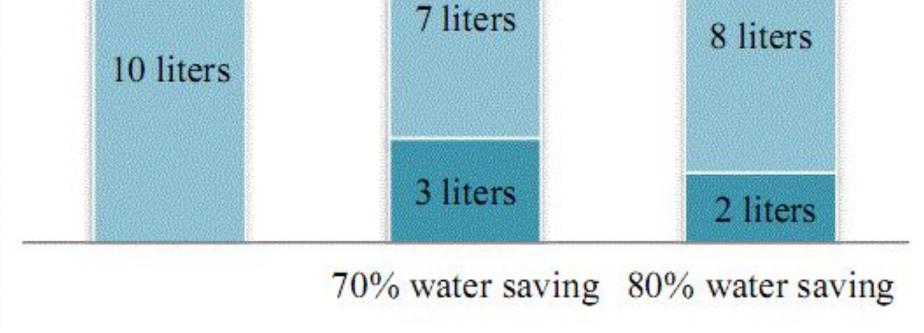

	Baseline				Proposed			
System Type	Material emissions (kg -CO ₂ e)	Transport 1 (kg -CO 2 e)	Transport 2 (kg-CO ₂ e)	Total (kg -CO ₂ e)	Material emissions (kg-CO ₂ e)	Transport 1 (kg-CO ₂ e)	Transport 2 (kg -CO ₂ e)	Total (kg-CO ₂ e)
Wall Roof	215 200	1	1	217 202	195 _ 150	1 _ 1	0 _ 0	196 151
Floor	155 120	1 1	1	157 122	120 105	1 1 1 ⁻	0	121 106
Fenestration Structural	325	2	1	- 328		1 -	0 -	301
Grand Total emissions per functional unit (kg -CO 2 e)			1026		Grand Total emissions unit (kg -CO ₂ e)	per functional	875	

Table T.20 : Summary of Embodied Carbon emissions per functional units for building systems

Water fixtures consumption calculations

Fixture type	Max. flow rate/ consumption		Durati on		Estimated daily uses per FTE	No. of users	Total usage
Water closets (full flush)	2	LPF]	flush]	1114	2228
Urinals]	LPF	1	flush	2	100	200
Water closets (half flush)]	LPF]	flush	2	1114	2228
Wash basin / sink]	LPM	0.25	minute	4	2228	2228
Health faucet	4.5	LPM	0.25	minute]	2228	2506.5
Shower head / Handheld spray	6	LPM	8	minute s	0.1	1114	5347.2
Total usage (LPD)							14737.7

Amount of leakage water saved : 28715 KL

SDI SIRJJCOA SYNERGY

Rainwater harvesting surfaces	Area m2	Runoff coeffecient	Effective catchment area m2
Roof Surfaces	200	0.85	170
Hardscape areas	400	0.70	280
Softscape areas	200	0.30	60
Other			0
			0
Total Effective catchm	510		

Table T.21 Effective catchment area

Per Capita daily consumption			-	Grey water filter efficiency	
	135	8	1080	75%	

Table T.23 Grey water Filter efficiency

Occupant's Activity	Percent usage	Quantity	Grey water	black water
Bathing	29.0%	313.2	100%	0%
Washing	19.6%	211.68	100%	0%
Drinking	4%	42.12	0%	100%
Cooking	3%	31.32	0%	100%
Toilet	17.0%	183.6	0%	100%
Cleaning house	8.0%	86.4	100%	0%
Washing Utensils	16.4%	177.12	100%	0%
Others	3.20%	34.56	50%	50%

Water use	Quantity	Liters/day
Occupants : {People x l/person}	8	135
Irrigation (max) : {m2 x I/m2}	400	1.7
Cooling tower (max) : {Ton x I/Ton}	8.57	64
Other		

Table T.22 Water Usage

Months	Rainfall (mm)	Effective rain (mm)	Harvested rainwater (I)
July	200	195	99654
August	200	195	99603
September	123	118	59925
October	19	14	6885
November	3	0	0
December	10	5	2550
January	23	18	9027
February	20	15	7701
March	15	10	4845
April	10	5	2601
May	15	10	5100
June	68	63	32079

Table T.24 Percentage of greywater and black water

Table T.25 Harvested Rainwater Calculations

Mo nth	Days in month	Generated black water	Generated Grey water	Filtered grey water Month	Days in month	Occupant demand	Irrigation seasonal factor (%)			Cooling tower water demand (I)	Total water demand (I)
Jul	31	8504	24976	18732.06 July	31	33480	20%	4216	0%	0	37696
Aug	31	8504	24976	18732.06 August	31	33480	20%	4216	0%	0	37696
Sep	30	8230	24170	18127.8 September	30	32400	20%	4080	0%	0	36480
Oct	31	8504	24976	18732.06 October	31	33480	50%	10540	0%	0	44020
Nov	30	8230	24170	18127.8 November	30	32400	50%	10200	0%	0	42600
Dec	31	8504	24976	December 18732.06	31	33480	50%	10540	0%	0	44020
Jan	31	8504	24976	18732.06 January	31	33480	100%	21080	0%	0	54560
Feb	28	7750	22760	17070.345 February	28	30510	100%	19210	0%	0	49720
Mar	31	8504	24976	18732.06 March	31	33480	100%	21080	50%	8501	63061
Apr	30	8230	24170	18127.8 April	30	32400	100%	20400	100%	16454	69254
Ma Y	31	8504	24976	18732.06 May	31	33480	50%	10540	100%	17003	61023
Jun	30	8230	24170	18127.8 June	30	32400	50%	10200	50%	8227	50827

Table T.26 Annual water Requirement

BOQ (Bill of quantities)

Mahindra Homeground - RWH System BOQ Pimpri Chinchwad

r. No.	Description	Unit	No.	Rate	Amount
-	RWH structure				
1	Rainwater Harvesting Structure : Providing Rainwater Harvesting (1.5m x1.5 m x 2.95 m ht) in Second class Burnt Brick masonry with conventional brick in cement mortar 1:6, with HD concrete chamber cover including excavation, filter media, debris removal as directed in drawing, etc complete	No	10	119302	1193016
2	Silt Chamber : Providing Recharge Pit (1.5 x1 x1.5m ht) in Second class Burnt Brick masonry with conventional brick in cement mortar 1:6, with MD concrete chamber cover including excavation, plaster, debris removal as directed in drawing, etc complete	No	3	30004	90013
3	Grease trap Chamber : Providing Recharge Pit (1.5 x1 x1.5m ht) in Second class Burnt Brick masonry with conventional brick in cement mortar 1:6, with MD concrete chamber cover including excavation, plaster, debris removal as directed in drawing, etc complete	No	8	30004	240036
4	Rain water drain Chamber : Providing Brick SWD chamber (0.6 m x0.6 x 0.75m ht), with MD chamber cover as directed etc complete	No	3	12000	36000
5	R.C.C. pipe of NP2: Providing & laying 200 mm dia RCC NP 2 spun pipe as per drawing & design with sealing joints with cement with line, level finishing (Connection with SWD & Recharge pit etc complete.	Rm	10	1100	11000
8	Design :Providing detailed layout, design, drawing & estimation	LS	1	46022	46022
9	Maintenance : Removing & cleaning of recharge pit after three Year	LS	1	50000	50000
Total	in words- Sixteen Lakh Sixty six Thousand	eighty eig	ght rupe	es only	Rs. 16,66,08

Table T.27 :BOQ

SDI SIRJJCOA SYNERGY

Considerations for Sumps and Recharge Pits

Rain water harvesting technique is one of the other alternatives to manage and conserve water for a secure and sustainable future.X

Sr. No	Water Storage Structures	Dimensions/Quantity of Structures	Storage Capacity in Cum
Conside	rations- Rainwater Sumps-2, Pit cum F	Recharge Borewells-3, Recharge	ge Pits-7
Total Ra	inwater Generated from Podium and R	ooftop terrace area	3068.8017
1	Total intake capacity of the aquifer		417.25
2	Rainwater Sumps	2	200
3	Pit cum Recharge Borewells	3	131.5467
4	Recharge Pits	7	246.6567
5	Total quantum of storage with various sources		995.4543
	Total Excess Rainwater remains harvestable after		2073.3474
	utilizing all proposed storage options		

Table T.28 Storage capacity of various units

CONSIDERATIONS FOR SUMPS AND RECHARGE PITS

To harness the full capacity of subsurface aquifer it's recommended to have 3 Pit Cum

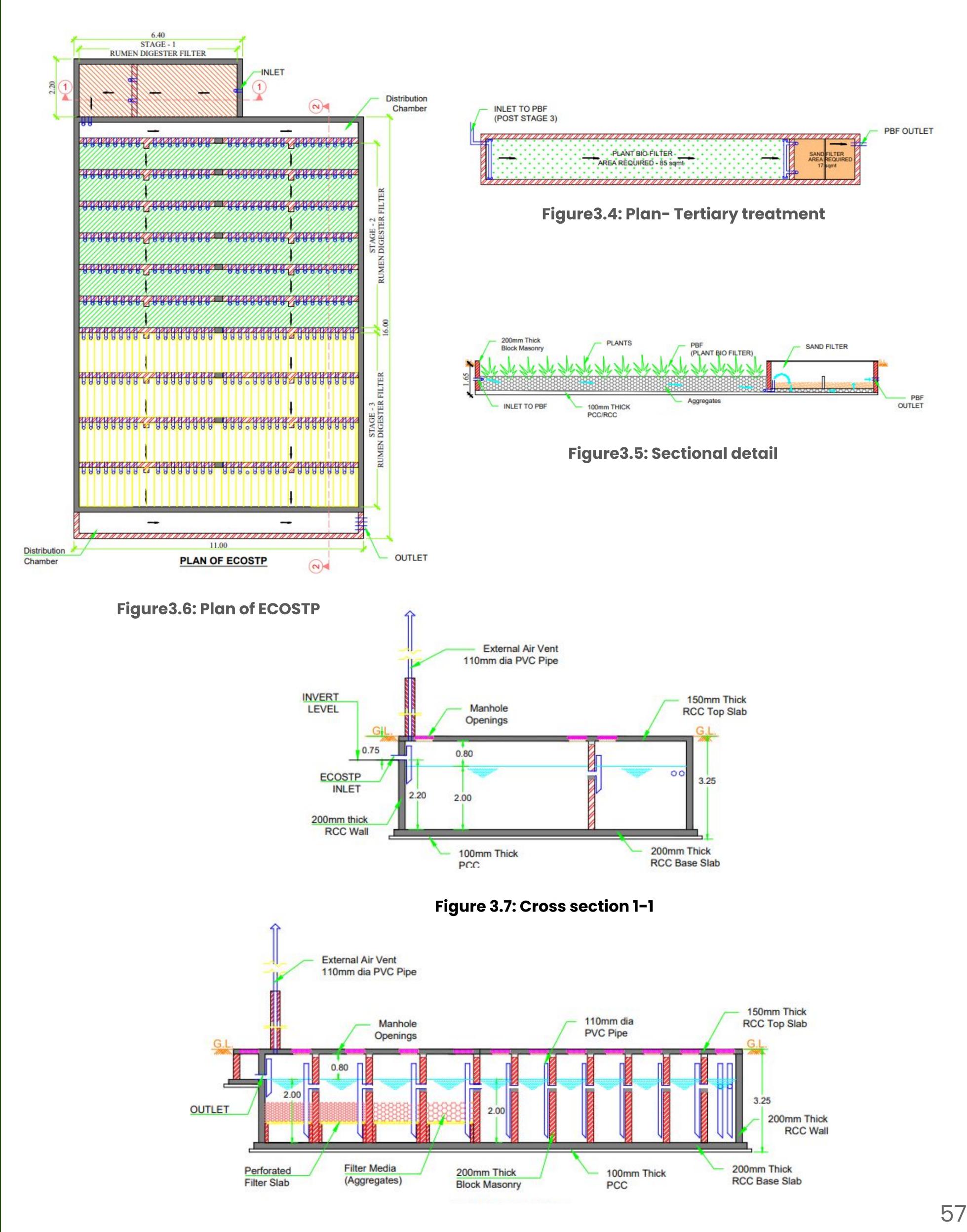
Recharge Borewells. The Dimensions is recommended for recharge BW is 6-inch

diameter and 60 meters depth, with a recharge pit of dimensions 1.5m*1.5m*2.95m.

Additionally to enhance recharge it's recommended to have 07 nos. Recharge Pits, with dimensions as 1.5m*1.5m*2.95m

It recommended that the subsurface aquifer be recharged only through Roof Top

generated rainwater only


2 rainwater storage sumps of capacity 100 Cum are proposed, which will accommodate 200 Cum rooftop water

As per EC, it's recommended that the construction of Recharge pits should not be in the Storm Water drain line

Eco STP Details

Figure 3.8: Cross section 2–2

SURVEY CONDUCTED FOR CUSTOMERS

Link to survey - https://docs.google.com/forms/d/e/1FAIpQLSfB0Jc5HpOGoCAV2WeEpXIo4v6VZQ2xhHaqIDgWfHslbSUtrQ/viewform Results- https://docs.google.com/spreadsheets/d/1uxnIA5ycxvrDNvMiu1kHZbInspUOcbIcsA7UhMNiMfA/edit?usp=drivesdk

58

Project Partner

PROJECT PARTNERS GIVEN TO US BY SOLAR DECATHLON INDIA

Address

GreenJams BuildTech Pvt. Ltd.,

401, 10-5-14/c, Mantis, Facor Layout, Ramnagar, Visakhapatnam - 530 002

22.02.2023

To, The Director, Solar Decathlon India

Dear Sir,

This is to inform you that our organisation GreenJams is collaborating with participating team Synergy led by Sir J.J. College of Architecture on a Multi-family housing project for their Solar Decathlon India 2022-23 competition entry.

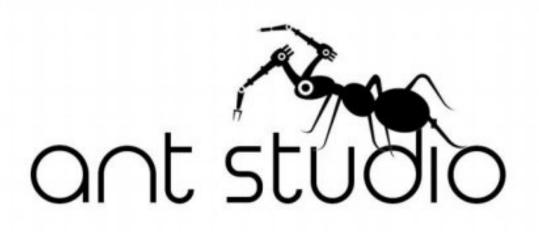
The nature of our collaboration will be to mentor the team on carbon mitigation strategies and provide information about the product offerings at GreenJams.

We would like to have a representative from our organization attend the Design Challenge Finals event in April / May, if this team is selected for the finals.

We would like our organisation's logo to be displayed on the Solar Decathlon India website, recognizing us as one of the Industry Partners for the 2022-23 competition.

With warm regards,

A-1 P.


Tarun Jami, Founder & CEO GreenJams tarun@greenjams.org +919591170791

Telephone M: +91 9591170791

M: +91 9727139348

Web

E: hello@greenjams.org W: www.greenjams.org

Communication office: Khasra no. 207, Village Raipur Khader, Near Panther Polo Ground, Noida – 201301

> Registered office: D64, Fourth Floor, Amar Colony, Lajpat Nagar 4, New Delhi 110024

> > Mobile: +91 99 53 33 02 70 website: www.ant.studio

21-02-2023

To,

The Director, Solar Decathlon India

Dear Sir,

This is to inform you that our organisation, **Ant Studio**, is collaborating with the participating team led by Sir J.J. College of Architecture in a Multi-Family Housing Building project for their Solar Decathlon India 2022-23 competition entry.

The nature of our collaboration will be as consultants for Climate Responsive Building Envelopes.

We would like to have a representative from our organisation attend the Design Challenge Finals event in April/May, if this team is selected for the Finals.

We would like our organisation's logo to be displayed on the Solar Decathlon India website, recognising us as one of the Industry Partners for the 2022-23 competition.

With warm regards,

.

Pranjal Maheshwari Architect Ant Studio pranjal.m@ant.studio 9213062741

ECOSTP Technologies Private Limited

Brigade Real Estate Accelerator Program Brigade Gateway Campus, 26/1, Dr. Rajkumar Road, Malleswaram - Rajajinagar, Bangalore 560 055, India : team@ecostp.com

22-02-2023

To,

The Director, Solar Decathlon India

Dear Sir,

This is to inform you that our organisation ECOSTP is collaborating with the participating team led by Sir J.J. College of Architecture in a Multi-Family Housing Building project for their Solar Decathlon India 2022-23 competition entry.

The nature of our collaboration will be to explore natural biophillic sewage treatment based on biomimicry principles. ECOSTP is a zero power zero chemical sewage treatment technology based on digestive system of a cow.

We would like to have a representative from our organisation attend the Design Challenge Finals event in April/May, if this team is selected for the Finals.

We would like our organisation's logo to be displayed on the Solar Decathlon India website, recognising us as one of the Industry Partners for the 2022-23 competition.

With warm regards,

Tharun Kumar

Founder & CEO

+91 7259002986 / tharun@ecostp.com

22-02-2023

To,

The Director,

Solar Decathlon India

Dear Sir,

This is to inform you that our organisation, **AMBIATOR Pvt. Ltd.**, is collaborating with the participating team led by Sir J.J. College of Architecture on a Multi-Family Housing project for their Solar Decathlon India 2022-23 competition entry.

The nature of our collaboration will be to guide and assist the **Synergy** Team to enable <u>Net Zero</u> - Adaptive Thermal Comfort with the AMBIATOR in the Multi-Family Housing Project.

We would like to be able to have a representative from our organisation attend the Design Challenge Finals event in April/May, if this team is selected for the Finals.

We would like our organisation's logo to be displayed on the Solar Decathlon India website, recognising us as one of the Industry Partners for the 2022-23 competition.

With warm regards,

Tiger Aster Founder & CEO

AMBIATOR Pvt. Ltd. hi@ambiator.com +91 9588663075

www.ambiator.com - hi@ambiator.com

Date: 22nd Feb, 2023

To, The Director, Solar Decathlon India

Dear Sir,

This is to inform you that our organisation, **ProEarth Ecosystems Private Limited**, is collaborating with the participating team led by Sir J.J. College of Architecture in a Multi-Family Housing Building project for their Solar Decathlon India 2022-23 competition entry.

The nature of our collaboration will be to support the students of Sir J. J. College of Architecture to work on a practical and implementable zero waste model at the chosen residential project.

We would like have a representative from our organisation attend the Design Challenge Finals event in April/May, if this team is selected for the Finals.

We would like our organisation's logo to be displayed on the Solar Decathlon India website, recognising us as one of the Industry Partners for the 2022-23 competition.

With warm regards,

Anil Gokarn Director ProEarth Ecosystems Private Limited Email: anil.gokarn@proearth.in Phone: +91 98812 54920

f 🔟 in 🕨 🔽 🚫

301, Abhipreet Residency, S. No. 64/1, Pancard Club Road, Baner Pune 411045 Tel. +91 8007 01 14 14 CIN No: U74999PN2014PTC152383 info@proearth.in | www.proearth.in FB, Insta, Twitter @proeartheco

23rd of February 2023

Τo,

The Director,

Solar Decathlon India

Dear Sir,

This is to inform you that our organization, G2V® Solar Solutions Pvt. Ltd., is collaborating with the participating team led by Sir J.J. College of Architecture in a Multi-Family Housing Building project for their Solar Decathlon India 2022-23 competition entry.

The nature of our collaboration will be non-commercial and purely educative. We shall provide mentorship to the team and information relevant to the sector.

We would like to have a representative from our organization attend the Design Challenge Finals event in April/May if this team is selected for the Finals.

We would like our organization's logo to be displayed on the Solar Decathlon India website, recognizing us as one of the Industry Partners for the 2022-23 competition.

With warm regards,

mitum MR.W

Vivek Vardhan Director & CTO G2V® Solar Solutions Pvt. Ltd. Email: inc@g2vsolar.com Phone: +91 8121066567

University of Mumbai

SIR J. J. COLLEGE OF ARCHITECTURE

78/3, DR. D. N. ROAD, MUMBAI - 400 001. (INDIA) TEL.(O) : 2262 1649 Email -asir[jcoa@gmail.com Fax - 2262 1118

> NO.SJJCA/student/Bon./794/2023 23/02/2023

To The Director, Solar Decathlon India Date: 23 February, 2023

Subject: Bonafide of students participating in Solar Decathlon India 2022-23

Vaibhav Kadam (5th year) Sagar Sherkhane (5th year) Ayushi Thakur (4th year) Vaishnavi Parmar (4th year) Tapasya Vagal (4th year) Shreyansh Dayma (3rd year) Shreyansh Dayma (3rd year) Prathamesh Kawate (3rd year) Rhea Oswal (3rd year) Suchi Jain (3rd year) Suchi Jain (3rd year) Suchi Jain (3rd year) Suchi Jain (3rd year) Omkar Vernekar (2nd year) Sahil Dhatrak (2nd year) Krutika Vilekar (2nd year)

I, hereby, assure that the students mentioned are bonafide students Sir J.J. College of Architecture for the academic year 2022-23.

1/21/02/2021

Prof.Rekha Nair, Faculty Guide

Prof. Rajiv Mishra The Principal, Sir J.J. College of Architecture

