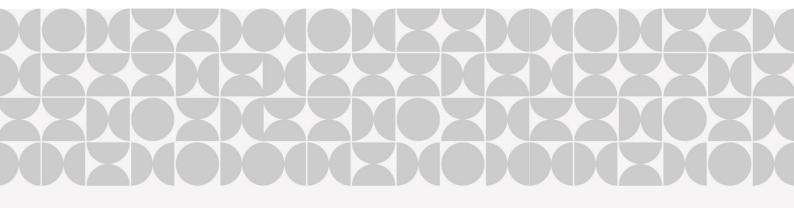


FINAL DESIGN REPORT

April 2023

Competition division: Office building


Team: Titans

Executive summary Team Introduction Project Background Goals Design documentation

National Institute of Technology, Tiruchirappalli

Contents

Executive Summary
Response to Reviewer Comments7
Team Summary10
Team Members10
Approach10
Background on Lead Institute
Faculty Lead11
Industry Partner
Design Process
Project Summary12
Project name12
Project partner12
Project description12
Area statement12
Target EPI
On – site renewable energy potential12
Site and Context13
Goals14
Energy Performance
Water Performance14
Embodied Carbon14
Resilience
Engineering and Operations15
Architectural Design15
Affordability
Innovation
Health and Wellbeing15
Value Proposition15
Design documentation16
Energy Performance
Water Performance
Embodied Carbon

Resilience
Engineering and operations
Architectural Design29
AFFORDABILITY
Health and Wellbeing33
Innovation
Value Proposition
Building Renders
Appendix41
Appendix 1 - Detailed building area program41
Appendix 2 - Architectural drawings43
Appendix 3 – Engineering drawings51
Appendix 4 – Energy simulation inputs54
Appendix 5: Energy Output table56
Appendix 6 – Net-zero water-cycle design and calculations
Appendix 7 – Cost Estimate Summary58
Appendix 8 – Embodied Carbon calculations59
Appendix 9: Cooling Load Estimate61
61
Appendix 10: Mechanical and Electrical Layout62

List of Tables

Table 1: Response	e to Reviewers Com	ments		9
Table 2: On-Site renewable Energy potential 13				13
Table 3: Optimize	d building material	s		16
Table 4: Monthly	Solar Generation			19
Table	5:	Proposed	Water	-
Table 6: Baseline	vs Proposed Water	consumption pattern		19
Table 7: Water Ba	alance Table			20
Table 8: Sanitary	Fixture Details			21
Table 9: Proposed	Table 9: Proposed Water System22			
Table 10: Material Palette for base and proposed case 23				
Table 11: Embodi	ed Energy Base vs F	Proposed Case		24
Table 12: Embodi	ed Carbon Summar	у		24
Table 13: Waste (Generation Details .			28
Table 14: Basecas	e Vs Proposed Estir	nate		32
Table 15: Area Sta	atement Ground Flo	oor		41
Table 16: Area Statement First, Second, Third Floor 42				42
Table 17: Area Sta	atement of Service	Core		42
Table 18: Estimat	e Summary			58
Table 19: Embodi	ed Carbon calculati	on summary		59
Table 20: Materia	I sources and their	distance		60

List of Figures

Figure 1: Team Members	10
Figure 2: NIT Trichy	10
Figure 3: Design Process	11
Figure 4: Software's used	11
Figure 5: Sunpath	13
Figure 6: Site Context Analysis	14
Figure 7: Energy Performance	16
Figure 8: ETTV and RTTV Calculation	17
Figure 9: Fenestration Assembly	17
Figure 10: Base Case and Proposed Case for cooling load	17
Figure 11: Ventilation Schematic	18
Figure 12: HVAC Schematic Figure 13: Solar Canopy Details	18
Figure 14: Solar Panel Array	18
Figure 15: Base vs Proposed Case Graph	20
Figure 16: Graph showing water collected vs water demand	21
Figure 17: Agribio Panel, Hollow Concrete Block and AAC filler Slab	23
Figure 18: Comparative Carbon emission of Base vs Proposed Case	24
Figure 19: Bangalore Natural Disaster prone chart	25
Figure 20: Firefighting Plan	26
Figure 21: Model of Structural Systems	27
Figure 22: Foundation Section and Column, Beam Section with Reinforcement data	27
Figure 23: Slab Sections	28
Figure 24; Solar Canopy Details	28
Figure 25: Schematic for HVAC and Building Automation systems	29
Figure 26: Building Form Development	29
Figure 27: Proximity Chart	30
Figure 28: Building Site Plan	30
Figure 29: Life Cycle Cost Comparison	33
Figure 30: Thermal Comfort Data	34
Figure 31: Building Renders	39
Figure 32: Basement Floor Plan	43
Figure 33: Ground Floor Plan	43

Figure 34: First Floor Plan			
Figure 35: Second Floor Plan			
Figure 36: Third Floor PlanFigure 37: Terrace Floor Plan45			
Figure 38: East Elevation			
Figure 39:South Elevation			
Figure 40: Section AA'			
Figure 41:Section AA'			
Figure 42: Measurement Drawing			
Figure 43: Measurement Drawing			
Figure 44: Measurement Drawing50			
Figure 45: Slab and beam layout51			
Figure 46: Structural Sections			
Figure 47: Plumbing Layout53			
Figure 48: Energy Simulation Inputs55			
Figure 49: Water Schematic Drawings56			
Figure 50: Schematic Drawing of water performance57			
Figure 51: Cooling Load Calculations61			

Executive Summary

Titans is a multidisciplinary group of 12 students from various backgrounds in architecture, civil and energy engineering. The project was to design a Net Zero office building for Agrocorp with the project location as Bangalore. The design process was created using a data-driven, integrated design approach. The project is a Basement+4 story build-own-operate project. The aim of the design was to design a net zero building with various contests into considerations not limiting to energy, water, resilience, health and wellbeing, embodied carbon, engineering systems and affordability by involving various aspects of design, production and execution.

Considering all the building science principles, a pre design study was conducted on comfort, site studies and RE potential. An optimised building mass has been achieved in terms of the pre design analysis to achieve maximum thermal comfort, daylighting, operating the building in a mixed mode ventilation and by reducing the cost.

The built up area of the project is 4615 Sq.m. In terms of energy the achieved EPI is 43.69 kWh/ Sq.m, reaching the NetZero status by installing a renewable system of 145kWp panels producing 2,17,500 kWh/annum. The building also reached its net zero water by reducing its LPD usage to 15.3lpd. Water consumption has been reduced by 70% through fixtures. To further enhance the value of the project a water positive system has been designed by combining efficient rain water harvesting, Vortex DEWATS system.

The façade of the building is designed based on their cardinal axis as every side will have different requirements. The indoor comfort, embodied carbon, heat transfer and cost is being considered for an efficient design. Embodied carbon and Engineering and operations worked on reduction of embodied energy and quantity of materials resulting in a 2337.4 metric tonne of KgCO2-e emission, which is 40.2% reduction in carbon emission from the basecase.

The occupancy hour's drive energy and water use in office buildings, resulting in high effluent generation. Multiple sources were used to collect data for the offices from case studies about prospective building occupants for this project (e.g., Google search volume trends, publicly available demographic data and a bespoke survey especially designed for this project). The data provided us with insights into potential expectations from the personal comfort environment, facility usage, and guided the project's goals. For example, in our design proposal, we place a high value on the system installed, as well as the installation of a solar PV canopy array. This resulted in the creation of a highly efficient design in which the needs and comfort of the occupants are prioritized in relation to the Client.

Providing Aeroponics tower garden system in the rooftop increases the monthly profit for the client as the yield of an aeroponics system is three times that of a hydroponic system. Algae Bio-reactor panels have been used to increase the energy production while cleaning the air of pollution at the same time. To and fro discussions among the 10 contests converged into an effective design proposal which has followed the path set out by the initially proposed goals. The estimate of the project increased by 12%, but the payback period for the client is reduced to 3 to 5 years. In which the client will be able to get back his investment.

Response to Reviewer Comments

Section	Reviewer's Comment	Our Response			
	Reviewer 1				
Energy Performance	Your team demonstrated well about your strategies of energy conservation however simulation result header have no result. Also 84% reduction is unrealistic so check that.	Initially we took values from ASHRAE for baseline simulation. We have reiterated it with material specification from ECBC. The calculation has been updated in energy performance Energy Performance.			
Water Performance	Impressive you are on the right track but rainwater harvesting capabilities from the mentioned catchment area needs reconsideration. As your team incorporates the DEWAT system area requirement, initial and maintenance cost needs to be added.	The catchment area for rain water harvesting has been updated as there has been a bit of change in the site plan. The cost of the system has been added in affordability contest while the area is mentioned in the site plan.			
Embodied Carbon	Great work in reducing carbon footprint for wall material; do the same for overall project. The percentage will be changed and then you can claim overall reduction of your project. Transportation emission reduction needs justification.	Overall reduction of carbon footprint has been updated in <u>Embodied Carbon</u> . Transportation distance has been updated in the sheet provided in the appendix.			
Resilient Design	Your team's findings in threats for the location is good. Fire exit plan is impressive. Your team missed a major threat that is power cut; explore how you will be handling electrical failure. For structural strength you can add some pictures of your interventions to improve physical strength.	Regarding structural interventions it is mentioned in <u>Engineering and operations</u> . We considered our battery backup for our days of autonomy. This helped us in avoiding the requirement of a generator.			
Engineering and Operations	Good effort. You are using PTFE sheets which are having high embodied carbon value any particular reason behind using it in the east. West façade windows are mutually shaded by the adjacent buildings you mentioned so mention the distance between those two buildings. Did you check the cooling demand of your project? Without knowing the requirement how you are understanding	The distance between the two buildings in the west orientation is 7M. The cooling demand for the project is added in the appendix. For the East façade we have considered algae bioreactor panel as this will improve our design in terms of both energy production and converting CO2 into O2. Details regarding the HVAC system has been mentioned in Energy and engineering operations and all the calculation tables has been added in Appendix.			

		ΤΙΤΑ
	VRF will a perfect fit or not and what will be the capacity and number?	
Architectural Design	Design is great; work on interior aesthetics and user experience.	It has been updated in Architectural Design contest
Affordability	Your cost estimation needs rectification. All your interventions need to be considered in cost estimation and also check ROI for the same.	We have updated the data in AFFORDABILITY.
Innovation	Kinetic façade is an interesting idea. Did you check the feasibility and cost effectiveness of it? How will you automate it? Are you working on the M&V application if yes then explain it elaborately with a demo.	The innovation part has been updated from the last submission Innovation.
Health and wellbeing	Excellent work	No comments
	Reviewer 2	
Energy Performance	Please check RE generation potential. please clearly identify the envelope EE measures for the final proposed case. please check EPI again.	RE generation potential has been verified.
Water Performance	Please explain how is the surplus being returned to a public source. it is also not clear if the waste water from kitchen/ sink is being recycled or not (as per the water diagram).	Every outlet water from the building is getting treated in our proposed vortex DEWATS system with an addition of disinfection tank it converts the water potable which we use for landscaping and flushing.
Embodied Carbon	Please consider measures for roof, interior finishes and fenestration.	We have updated our work Embodied Carbon.
Resilient Design	The resilience measures are still very nascent. Please develop them further. eg: please specify how will the bioswale	The queries raised has been answered in the design documentation stage Resilience.

		ΤΙΤΑ
	be designed for storm water management? please share more data about the risks; historical patterns or data to support your assertion that these are critical risks.	
Engineering and Operations	Please add information about building systems such as the envelope, HVAC, water management etc.	The data has been added in Engineering and operations.
Architectural Design	The built form and facade treatment looks promising but needs further development. Please check the size of the vertical fins on the facade. if these are to be shading devices, the size may be inadequate.	For the East façade we have considered algae bioreactor panel as this will improve our design in terms of both energy production and converting CO2 into O2. Details regarding the HVAC system has been mentioned in Energy and engineering operations and all the calculation tables has been added in Appendix.
Affordability	Please revisit the costs. Consider operational costs also.	Affordability data has been updated in the design documentation. Also the calculation data has been updated in the excel file.
Innovation	Please describe in detail the kinetic facade. And it is not clear how this will be integrated in the building. Other solutions listed in this section are common in sustainable buildings.	Innovation design for this project has been reworked on by including some new parameters. Innovation.
Health and wellbeing	Thermal comfort and indoor air quality standards are not mentioned. Neither are the strategies for both described. it is also not clear if the indoor air quality and thermal comfort is sufficient.	The data has been updated in the design documentation stage.
Value Proposition	Measures for net zero water and energy are logical. The report has clarity and the information presented is easy to understand. Please highlight the economic returns over the lifetime, and physiological benefits to users.	It has been updated in the design documentation stage. Value Proposition.

Table 1: Response to Reviewers Comments

Team Summary

Team Name	: Titans
Institution Name	: National Institute of Technology, Tiruchirappalli
Division	: Office building

Team Members

Figure 1: Team Members

Approach

Titans is a multidisciplinary team from the Departments of architecture, civil and energy engineering background. The team members were chosen after careful consideration and introspection of their strengths. The team consists of ten students pursuing a Master of Architecture specializing in Energy Efficient and Sustainable Architecture, one student pursuing a Master of Technology in Civil Engineering and one student pursuing a Master of Technology in Energy Engineering. Roles and responsibilities were divided based on each individual's strengths and areas of interest. Regular discussions with all the members of the team were held regularly to arrive at a design that is context-based, that goes along with the climatic parameters to arrive at design goals concluding in a better design and a high-performing building.

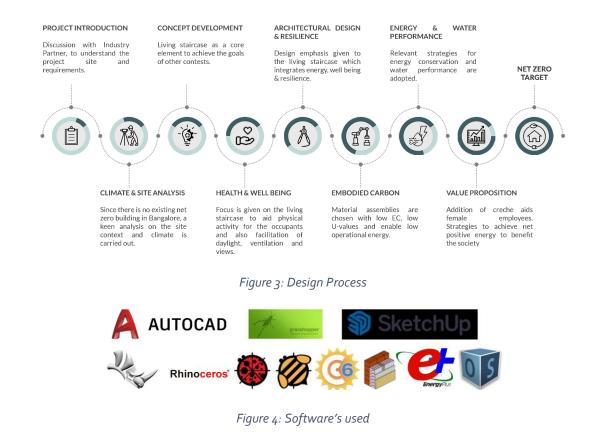
Background on Lead Institute

National Institute of Technology, Tiruchirappalli, comes under the Ministry of Human Resources Department (MHRD). It is a deemed university, having been declared an institution of national importance by the government of India in 2007. It offers ten undergraduate programs, 28 graduate programs and doctorate programs in Engineering, Architecture and Management.

Figure 2: NIT Trichy

Faculty Lead

Prof. Amalan Sigmund Kaushik S is an Assistant Professor at the Department of Architecture, NIT Trichy. He worked as a landscape architect in Dar Al-Handasah, Pune for three years after completing his master's in landscape architecture from School of Planning and Architecture, New Delhi and his bachelor's degree from School of Architecture and Planning, Anna University, Chennai. He is also a LEED AP specializing in Building Design and Construction.


Industry Partner

Ecofirst Services limited, a 100% subsidiary of Tata Consulting Engineers Limited is a leading multi-disciplinary Integrated Sustainable Design Consulting firm for the built environment with its headquarters located in Mumbai. They have a large portfolio of 350+ projects completed till date. The team works with Mr. Rakesh Bhatia a Senior Vice President in the firm to guide us to develop and discuss on the functionality of the proposed design, expert advice on project design and planning, Assistance with creating the Design Documents, Performance reports for competitions and building Certification Processes.

Design Process

Titans adopted a collaborative design strategy which helped the team to articulate the objectives and their correlations. The design process comprises nine stages, from the project introduction to the achievement of net zero targets. The constant meetings and design discussions enabled us to accomplish the project's goals. The design concept focuses more on bringing additional diversity when compared to monotonous office buildings.

Agrocorp™

Project Summary

Project name: Agrocorp HQ Corporate office

Project partner

Agrocorp Land base (P) Limited is a premiere realty company headquartered in Bengaluru, the technology capital of India. Its focus has been to create a mark in the land investment and premium second homes

been to create a mark in the land investment and premium second homes segment. Paving the way for hassle free, effortless, and transparent land investments that will enable millions to transact with trust while they grow their dream homes and

investments that will enable millions to transact with trust while they grow their dream homes and wealth.

Project description

The intent of the project is to construct a build-own-operate project by the project partner Agrocorp. The site in located in the Hebbal Region of Bengaluru, the site area is 4097 sqm.

Area statement

Location	: Hebbal, Bengaluru
• Site Area	: 4097.67 m ²
 Permissible FAR (including premium FAR) 	: 3.2
Permissible built-up area	: 13112.544 m ²
 Permissible ground coverage 	: 1475.16 m ²
 Proposed ground coverage 	: 1334 m ²
 Proposed built-up area 	: 4615 m ²
 Proposed Height 	: 15 m (G+3)
 Mandatory Setback (as per height) 	: 4m

The maximum FAR has not been achieved due to the bye-laws and site restriction. The setback for a 15m high building is 4.5m and when the height increases, the setback increases to 9m.

Target EPI

With a built-up area of 4615 m², our building has been designed to achieve an EPI of 43.69 kWh/sqmyear, under mixed mode typology for best-in-class design, achieving its net-zero target through solar PV. ((Reshma Singh, 2018)

On – site renewable energy potential

By maximising the roof area through an extended canopy to accommodate an expansive solar PV system we can achieve **2,17,500 kWh/year (145 kWp system)**. The generated power can cater to the annual energy requirement of the building and its occupants and make it Net Zero via a net metered connection.

ON-SITE RENEWABLE ENERGY POTENTIAL		
Total Roof Area (With Solar Canopy)	1100 sqm	
Roof Area excluding Services (20%)	926.2 sqm	
PV system potential per hour	145 kW	
Sun Hours in a day	9	
Number of Sunny Days	251	
Total Potential kWh/ annum (Potential*Hours*Days)	2,17,500	

Table 2: On-Site renewable Energy potential

Site and Context

The site is in the Northern part of Bengaluru, near Hebbal Lake. It is in Residential Zone and is surrounded by Commercial and office spaces. One of the prominent residential markets of Hebbal the city, has gained prominence due to its advantage as a premium commercial centre hosting many MNCs & Information Technology firms, making the location attractive for potential clients. Daily use of the office space will happen majorly by the office staff, potential Ago-land buyers are the expected clients, which is expected to be around 30% of staff occupancy.

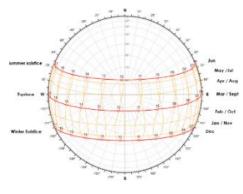


Figure 5: Sunpath

The site orients to northeast- southwest. The site abuts a **30m** wide road which is the primary noise source to the site. Apart from it there is a **railway track** in the close vicinity (**65 m**) which also contributes to noise **pollution**. The natural pool existing on site would be used in water shed management. Vegetation – Site is **coconut grove**, along with **Ashoka Trees** lines on the west and South.

Terrain - The site slopes towards NE. A water catchment of 110 sq. m area is situated on the Northern end of the site. Surrounding massing – On the west, the Site is flanked **by 3-5 storeyed buildings**, offering shade in the evenings. The Eastern And Northern part of the Site overlooks the Hebbal lake

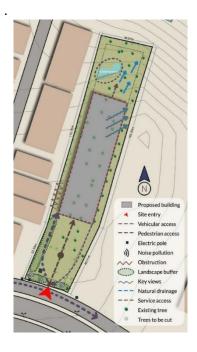
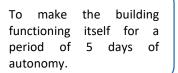


Figure 6: Site Context Analysis

Goals

Energy Performance

To achieve an EPI for bestin-class design (below 50 kWh/Sq. M) under mixed mode typology


Water Performance

To achieve a Net- Zero water cycle and reduce freshwater demand

Embodied Carbon

To reduce the embodied energy of structural and non-structural systems to achieve GRIHA standards

Resilience

Through various passive strategies, active strategies to reduce the energy consumption in the building. Designing a Renewable energy of 145kWp to reach net zero status. An optimized EPI of 43.69kWh/ Sq.m is achieved.

A water performance ratio of 1.72 was achieved indicating Water Positive system by recycling up to 90% of on-site waste water and efficient rain water harvesting systems. The water demand was reduced from 45lpd to 15.3lpd.

A 56.8% reduction in carbon emission is observed in non-structural components (Wall and fenestration). A 4.9% reduction in carbon emission is observed in nonstructural components (columns, beams, foundation, floor and roof slabs). An overall Embodied carbon reduction of 40.23% is observed.

This is achieved by Reli standard for resilient design + construction and NBC. Site planning and building design is based on foreseen threats.

Engineering and Operations

Minimize material waste, energy consumption during construction & operation.

Architectural Design

To design a net zero office building with effective space and functional needs. Usage of 20% recycled aggregate concrete in order to use salvage materials. Usage of flat filler slabs to increase the efficiency and reduce the self-load of slab. Usage of Air based cooling system with airside economizer and energy recovery ventilation achieving an epi of 32 kWh/Sq.m cooling load.

An optimized design is achieved by taking into account the climate, context, occupancy, and user specific functions.

Affordability

To reduce unnecessary and operating costs, ensure value for materials,

The capital expense increased by 12% as the installation of algae panels, PV panels, aeroponics system, water saving fixtures and energy efficient equipment's are higher.

Innovation

Creating robust systems to increase the efficiency as well as income generating opportunity which increases to ROI

Health and Wellbeing

To provide better indoor environmental quality that benefits health and wellbeing of the occupants to meet WELL v2 guidelines.

Value Proposition

To communicate energy efficient and sustainable solutions for the benefits of project partner, stake holder, employees. Using Algae Façade system for energy, Vortex DEWATS system for water and Aeroponic Tower garden for rooftop gardening to achieve Net Zero to Net Positive Generation in energy and high payback for affordability.

Air quality, water quality and comfort have been achieved in accordance with WELL guidelines

Social, financial and environmental benefits. Including market potentials are met through various strategies and technologies

Design documentation

Energy Performance

To achieve an **EPI for best-in-class design (below 50 kWh/Sq. M)** under mixed mode typology to achieve its net-zero target through solar PV Canopy of 145Kwp.

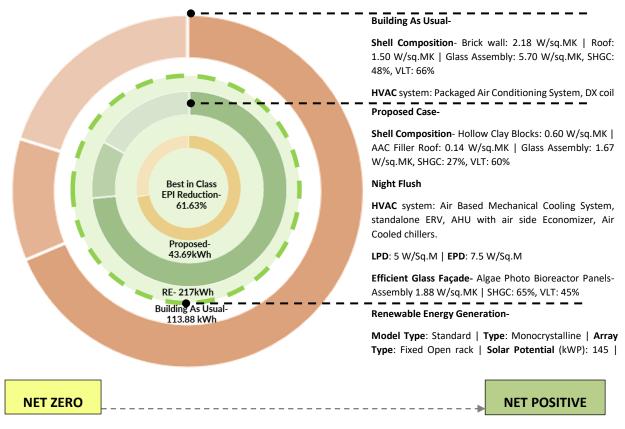
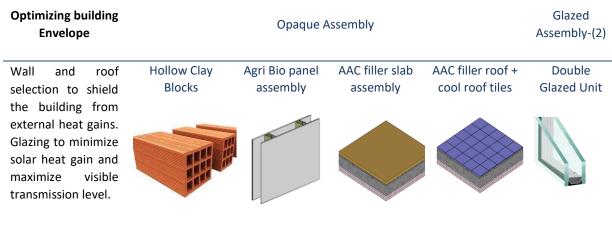
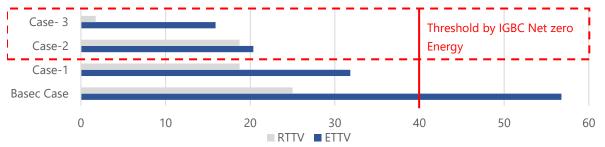



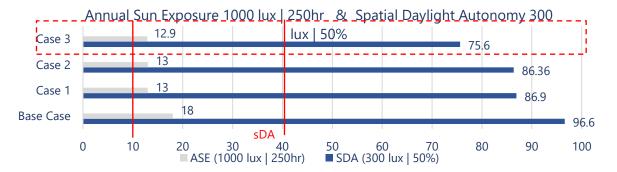
Figure 7: Energy Performance

As per the **Building as Usual Case** energy consumption of the particular office building is mostly due to cooling followed by equipment and lighting. To reduce the business-as-usual EPI with targeted EPI a certain set of Energy Conservation Measures were employed.



Passive Strategies:

Table 3: Optimized building materials



Optimizing Fenestration

Glazed Assembly-(2)

Double glazing, higher visual light transmittance, SHGC (lower is better in cooling dominated climes), U-Value. Algae Photo Bioreactor Panels- Assembly was carefully chosen for cost and performance (depending on building orientation and as per radiation levels).

Active Strategies:

The building uses a hybrid HVAC system which is integrated with sensors to allow active as well as passive fair cooling for the uncomfortable hours. The system consists of Air-Cooled Chiller, Air Handling Unit with Airside Economiser and Standalone Energy Recovery Ventilation.

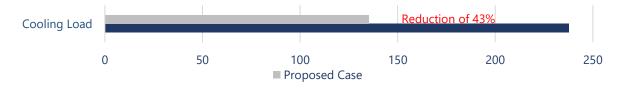


Figure 10: Base Case and Proposed Case for cooling load

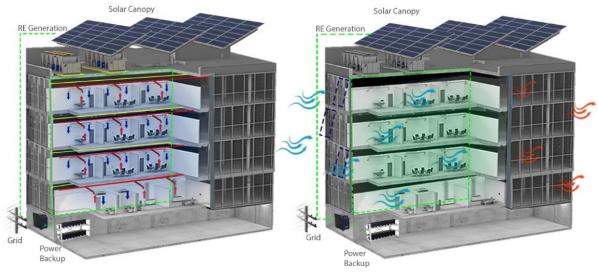
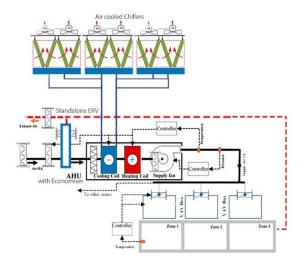



Figure 11: Ventilation Schematic

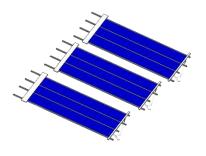


Figure	12.	HVAC	Schematic
riguic	12.	110/10	Jununu

Solar Canopy Details					
Model Type	Standard				
Туре	Monocrystalline				
Array Type	Fixed Open rack				
Array Tilt	20'				
Inverter Efficiency	96%				
Solar Canopy Area	1100				
Solar Potential	145 (kWp)				
Onsite Generation	217500				
Excess Generation	33228.66				
Solar Panel Size	79"*36"*1.4"				

Figure 13: Solar Canopy Details

Renewable Strategies:

The building is equipped with solar canopies. A Solar Canopy is an overhead roof or overhanging structure with a metal covering that provides shade.

Efficiency ratings of monocrystalline solar panels used for the project is 15%, earning them the title of the efficient solar panel type. The higher efficiency rating of monocrystalline panels makes them ideal with limited roof space, as it needs relatively fewer panels to generate electricity.

Figure 14: Solar Panel Array

Solar Power Generation				
Months	Solar Radiation	AC energy		
	(kWh/Sq.M/day)	(kWh)		
January	6.77	31,467		
February	6.86	28,256		
March	7.08	31,982		
April	6.64	28,920		
May	5.5	24,910		
June	4.67	21,208		
July	4.27	20,146		
August	4.22	19,868		
September	4.66	21,118		
October	5.46	25,336		
November	5.26	24,202		
December	5.6	26,608		
Annual	5.58	304,021		

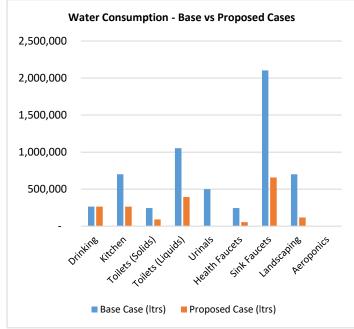
Table 4: Monthly Solar Generation

Water Performance

The baseline consumption was 5,813kl/year, and harvested water + recycled grey water was 3,823kl/year; hence about 1,990kl/year was required from the municipality to meet the demand. To counteract this, we have designed a **Water Positive system** with the annual consumption being 1,845kl/year and harvested + treated grey and black water being 3,676kl/year. Hence a water positive balance of **1,796kl/year** is achieved after considering water storage for dry months, fire safety, 5 days of autonomy, landscape irrigation and aeroponics tower garden.

Proposed Water System						
Pattern	Quantity	Unit				
Daily domestic requirement	4,401	lpd				
Daily flushing requirement	2,015	lpd				
Total daily domestic consumption	6,855	lpd				
Total annual domestic consumption	18,43,909	l/yr				
Aeroponics System - Treated Water	1,695	l/yr				
Total annual consumption	18,45,604	l/yr				
Total treated grey water	3,081	lpd				
Total treated black water	1,813	lpd				
Total daily domestic treated water	4,894	lpd				
Total annual treated water	12,07,546	l/yr				
Total rain water harvested	24,68,196	l/yr				
5 Days of autonomy	34,273	ltrs				
Annual Net Water Positive Balance	17,95,865	ltrs				

Table 5: Proposed Water System


Baseline Water Consumption Pattern				Proposed Water Consumption Pattern					
Baseline Consumption			45 lpd		Proposed Consumption			15.3 lpd	
Use	Pax	Flow Rate	Days	Consumption/Year	Use	Pax	Flow Rate	Days	Consumption/Year
Drinking	326	3	269	2,63,082	Drinking	326	3	269	2,63,082
Kitchen Faucets	326	8	269	7,01,552	Kitchen Faucets	326	3	269	2,63,082
Fixtures	Pax	Flow Rate	No.of Uses	Consumption/Year	Fixtures	Pax	Flow Rate	No.of Uses	Consumption/Year
Toilets (Solid Flushing)	326	8	0.35	2,45,543	Toilets (Solid Flushing)	326	3	0.35	92,079
Toilets (Liquid Flushing)	326	4	3	10,52,328	Toilets (Liquid Flushing)	326	1.5	3	3,94,623
Urinals	163	3.8	3	4,99,856	Waterless Urinals	163	0	3	-
Health Faucets	326	8	0.35	2,45,543	Health Faucets with aerator	326	1.8	0.35	55,247
Sink Faucets	326	8	3	21,04,656	Sensor Sink Faucets with aerator	326	2.5	3	6,57,705
Use	Area	Ltr/Day	Days	Consumption/Year	Use	Area	Ltr/Day	Days	Consumption/Year
Landscaping	1532	1.7	269	7,00,584	Landscaping	878	0.5	269	1,18,091
Total Consumption per Year (Itr)				58,13,144	Total Consumption per Year (Itr) 18,43,90			18,43,909	

Source: GRIHA v.2019

Table 6: Baseline vs Proposed Water consumption pattern

The domestic sewage water is treated with a **90% efficient Vortex DEWATS** that allows us to reduce fresh water demand. The treated water is further disinfected on site to be made safe for human consumption following the **5-part sanitation system as per the WELL standards**.

There is no water taken from the municipality and bore wells. The total demand on site is being met with the rain water harvested and treated black and grey water using the Vortex DEWATS.

Rain Water Harvesting Sources						
Water harvesting Sources	Area (sqm)	Runoff coeff				
Roof Surfaces	1161	0.95				
Hardscape areas						
Internal Road & Parking Bays	1253	0.95				
Pathways	150	0.8				
Loose Aggregate	56	0.45				
Softscape areas						
Vegetation on ground	878	0.3				
Bio-swale	133.5	0.5				
Effective catchment area	2768.65					
		_				
Muncipality & Borewell water	0					

		-
Daily Water C	onsumption	
Water consumption point	Quantity	Liters/day
Occupants : {People x l/person}	326	15.3
Irrigation (max) : {m ² x l/m ² }	878	0.5

5,05,187

supply (I/day)

Pond

Storage size (I) - UHT + Percolation

The usage of water-efficient fittings and fixtures has resulted in a 68.3% reduction from the base case.

	New & Existing Buildings
Part 1: Organic Chemical Removal	
Part 2: Sediment Filter	о
Part 3: Microbial Elimination	о
Part 4: Water Quality Maintenance	о
Part 5: Legionella Control	о

Due to the usage of the Hybrid aerothermal heat recovery system with VRF, water consumption would be minimal. Water required at the time of commissioning the system is 4000 Litres.

	Water Performance - Water Balance Table									
Month	Days In Month	Effective Rain (mm)	Harvested Water (I)	Muncipality Water Supply (l)	Total Fresh Water Demand (I)	Grey and Black Water Generated (I)	Irrigation Treated Water Demand (I)	Treated Water (I) for Flushing and Other Uses	Total Fresh Water Demand (I)	Storage (I) (Water Balance)
September	22	200	5,53,176	-	1,09,732	98,758	966	97,793	1,09,732	4,43,445
October	23	158	4,38,333	-	1,14,719	1,03,247	1,010	1,02,238	1,14,719	5,05,187
November	22	22	60,633	-	1,09,732	98,758	4,829	93,929	1,09,732	4,56,089
December	23	18	48,894	-	1,14,719	1,03,247	5,049	98,199	1,14,719	3,90,264
January	23	0	-	-	1,14,719	1,03,247	10,097	93,150	1,14,719	2,75,545
February	20	2	5,703	-	99,756	89,780	8,780	81,000	99,756	1,81,492
March	23	16	43,080	-	1,14,719	1,03,247	5,049	98,199	1,14,719	1,09,853
April	22	33	91,310	-	1,09,732	98,758	4,829	93,929	1,09,732	91,431
May	23	148	4,10,812	-	1,14,719	1,03,247	2,019	1,01,228	1,14,719	3,87,524
June	22	87	2,41,592	-	1,09,732	98,758	1,932	96,827	1,09,732	5,05,187
July	23	97	2,68,891	-	1,14,719	1,03,247	2,019	1,01,228	1,14,719	5,05,187
August	23	110	3,05,770	-	1,14,719	1,03,247	2,019	1,01,228	1,14,719	5,05,187
Total			24,68,196	-	13,41,718	12,07,546	48,597	11,58,949	13,41,718	

Table: Showing Rain Water Harvesting Portential, Total Consumption, Grey water Generated and Water Balance

Table 7: Water Balance Table

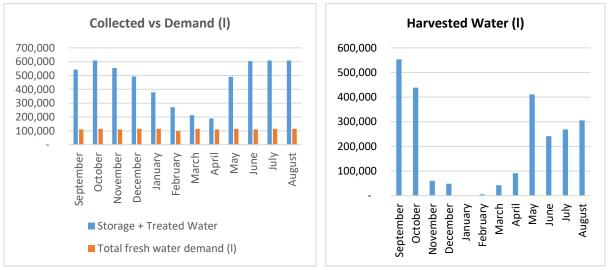


Figure 16: Graph showing water collected vs water demand

An effective closed loop water cycle with **sub-metering and monitoring** has been developed to minimize daily water demand. Harvested rainwater is **stored in oversized tanks to fulfil the water demand in the dry months** and reduces the freshwater demand completely. **Treated wastewater plus excess rainwater** is used as an **alternate source of water** for non-potable purposes. In the monsoon months, the **surplus rainwater is used for ground water recharge** through the **bio-swale and percolation pits**.

	Water Performance - Sanitary Fixture Details							
FIXTURE		FIXTURE Flow Rates Proposed Case Base Case			No. of Fixtures	No. of Uses	Details	Note
		Toilets (Solid Flushing)	3	8		0.35	Roca In Tank	
1		Toilets (Liquid Flushing)	1.5	4	37	3	(Dual Flush)	
2		Waterless Urinals	0	3.8	9	3	Parryware C0586	
3		Health Faucets with aerator	1.8	8	37	0.35	Parryware G0202A1GF	At 3.0 Bar Pressure
4	ſ	Sensor Sink Faucets with aerator	2.5	8	30	3	Jaguar	A
5	A A A A A A A A A A A A A A A A A A A	Kitchen Faucets with aerator	3	8	4	3	Roca G0639A1GJ	

Table 8: Sanitary Fixture Details

Reduction of water in landscaping:

Native plants with high aesthetic value such as Amaltas (Cassia fistula), Gulmohar (Delonix regia), Semul (Bombax ceiba), Indian coral tree (Erythrina variegate), Champa (Magnolia champaca) have been used for landscaping and in the bio-swale on the periphery and native shrubs such as White orchid-tree (Bahunia acuminate), Bougainvillea (Bougainvillea glabra), Hibiscus (Hibiscus syriacus), Kaner (Nerium oleander), Chandini (Tabernaemontana divaricate) are planted throughout the site. These require low maintenance and water.

A 80% efficient drip irrigation system combined with the use of native flora, limited lawn area and the bio-swale has decreased the water consumption by 83% and reduces water loss due to evaporation and wind.

		Water Consumption - Proposed Water System		
SNo.	System	Details	ltrs	cum
1	Underground Tanks			
а	Fresh Water Tank (Potable)	4 x daily water required	27,419	27
b	Treated Grey Water Tank	3 x daily treated water generated	14,682	15
С	Rain Water Tank	as per water balance table	5,00,000	500
d	Fire Tank	as per NBC 2016 (business buildings)	50,000	50
2	Overhead Tanks			
а	Fresh Water Tank	1.5 x daily domestic demand	6,602	7
b	Treated Grey Water Tank	1.5 x daily flushing demand		3
С	Fire Tank	as per NBC 2016 (business buildings)	5,000	5
3	Natural Vortex DEWATS			
а	DEWAT System (2 Phase)	0.2sqm per user for grey and 0.14sqm for black water	110 so	qm
b	Vortex Tubes	2 acrylic tubes of 50cm dia and 1.8m ht.		
С	Polishing Pond		4,894	5
4	Composting Pits		544	1
5	Bio Swale		133.5 s	sqm
6	Aeroponics Farming System	75 towers each of 2*0.6m = 90sqm total consumes 6.3 l/day. This system required a water reservoir tank with a monthly capacity as stated.	138.6	0.1

Table 9: Proposed Water System

Schematics for water performance drawings has been added in the appendix

Embodied Carbon

The Embodied Carbon calculation is done for 5 building components- Walls, Roof, Floor, Fenestration, and Structures. The base and proposed cases specifications are mentioned in the table below.

Base Case	Proposed Case
Exterior and Internal wall – 230mm Burnt Brick	Exterior wall - Hollow clay block(0.4mx0.2mx0.2m) + cement mortar
wall + 20mm exterior cement plaster + 12.5mm interior cement plaster	Internal wall - AgriBio Panel board drywall – 12mm board+100mm studs (air gap) + 12mm board
Intermediate slabs - 150 mm thick filler slab + 15mm Vitrified tile flooring.	Intermediate slabs - 150 mm thick filler slab with 50mm thick AAC block fillers + 25mm Granite stone flooring
Windows – Aluminium framed openable windows with 6mm glass shutters.	Windows - uPVC frame openable windows with DGU on South, East, and North walls. The West façade is single-glazed 6mm glass shutters.

L

Curtain wall - Fully glazed façade with 6mm glass with spider fittings on South and East. aluminium casement with 6mm glass panels.	Curtain wall - Fully glazed façade with 6mm DGU with spider fittings on South and East + Algae panels. (See innovation). UPVC casement with 6mm DGU with an air gap.
Structural components – Reinforced Cement Concrete (Beams + Columns + Foundation)	Structural components - RCC with 20% recycled concrete aggregate (Beams + Columns + Foundation)
Roof - 150 mm thick filler slab + cement finish	Roof - 150 mm thick filler slab + Cool Roof tiles

1

Table 10: Material Palette for base and proposed case

Strategies applied for each of the five building components are as mentioned below-

Walls (Exterior walls + Interior walls):

Using **locally manufactured** Hollow clay block that requires no plastering reduces material quantity requirements and transport energy. For internal partition, a carbon sequestering material – AgriBio Panel is chosen. It reduces 3Kg of Co2 in the atmosphere for every 3 Sq.ft of board. These materials are also biodegradable after their use phase.

Figure 17: Agribio Panel, Hollow Concrete Block and AAC filler Slab

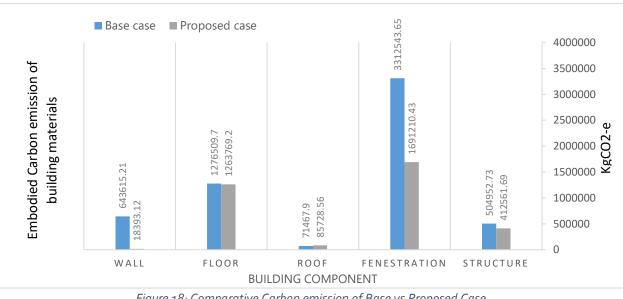
Fenestration (Curtain walls + Openable windows + Algae panel):

Usage of low-energy material. UPVC frames were chosen over metal frames as their initial carbon is relatively lower is relatively lower and requires much less maintenance over time. Energy generative Algae panels are incorporated into facades to utilize renewable resources on site (refer to Innovation contest for details).

Floors and Roof:

Load reduction- Incorporating filler blocks in the floor slabs to RCC slabs reduces the quantity of concrete used in the slabs. Use of AAC blocks as filler material, which has much lower Embodied energy in comparison with concrete. **Recyclability** – After the building's use phase, Granite stone tiles used for floor slab finish can be reused as tiles or recycled into aggregate/ sand without loss in compressive strength.

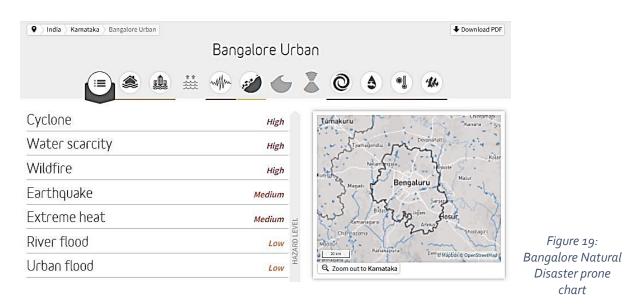
Structures (Beams + Columns + Foundation):



Load Reduction – Reduction in dead-load of the walls and floor slabs, leading to the reduced quantity of material used in structural components. Use of recycled material – 20% of aggregate material is replaced by Recycled aggregate Concrete, avoiding the use of fresh material and avoiding waste.

Embodied Energy - Base Vs Proposed Case							
Building Component	Base case	Proposed case	Result				
	(kg -CO2 e)	(kg -CO2 e)	Nesuit				
Wall	643615.21	18393.12	Reduction in CO ₂ by 97.1422%				
Floor	1276509.7	1263769.2	Reduction in CO2 by 0.998%				
Roof	71467.9	85728.56	Increase in CO2 by 16.6%				
Fenestration	3312543.65	1691210.43	Reduction in CO2 by 48.7%				
Structure	504952.73	412561.69	Reduction in CO2 by 18.3%				
Total	5809089.234	3471663.043	Overall reduction in carbon by 40.2374%				
Refer to Annexure xxxx or link https://shorturl.at/glpuM for details on transport energy							

Embodied Carbon saving summary					
Non-structural Carbon reduction 2246.555315 Metric tonne					
Structural Carbon reduction	90.870876 Metric tonne				
Overall Carbon reduction	2337.426191 Metric tonne				
2337.426191 Metric tonne of carbon emission reduction is equivalent to carbon sequestered by 2,787 acres of forest in a year.					


Table 12: Embodied Carbon Summary

Resilience

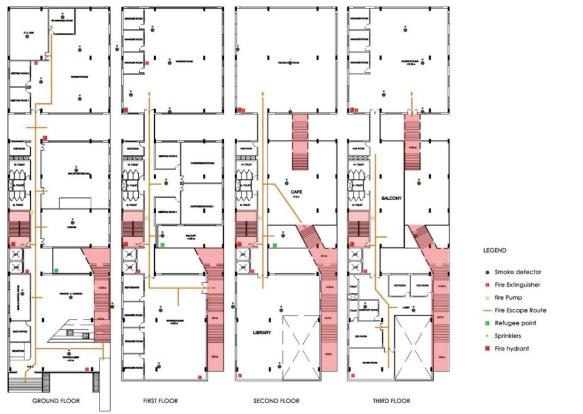
Bangalore is one of the fastest growing metropolises in India with a population of over 12M people. The ability of the building to mitigate short-term and long- term hazards is described here.

Seismic zone:

According to the seismic classification of Karnataka provided by BMTPC, Bangalore lies in Zone II, which is a low damage risk zone. The structure is designed by taking into account the eathquake codes IS 4326 (1993) and IS 1893 (1984).

Wind hazard:

According to the Wind hazard map of Karnataka provided by BMTPC, Bangalore lies in low damage risk zone (V_b = 33 m/s). Suitable strong framed structure is provided in case of any future hazard.


Water scarcity:

Bangalore has a high risk of water scarcity and droughts are expected to occur on average of every 5 years. On site rainwater and recycled water storage to cover operations icluding toilet flushing for emergency stand alone operations for a period of atleast 120 hours is provided. UG sump of capacity 27 cu.m, 16 cu.m and 500 cu.m are provided for storing portable water, treated grey water and rainwater respectively. Overhead tank of capacities 7 cu.m and 3 cu.m are provided for storing portable water and treated grey water respectively. **Fire Hazard:**

The living staircase acts as the fire stair and refuge area. Non – combustible structural materials are used. Buildings divided into blocks acts as fire breaks. UG sump of capacity 50 cu.m and overhead tank of capacity 5 cu.m is provided for firefighting.

Figure 20: Firefighting Plan

Electricity:

Bangalore in recent days is facing the issue of power cuts during the working hours. Considering 5 days of autonomy, the peak load requirement is 121 Wh. Hence, an 18150 VA inverter is provided in the electrical room to serve this purpose.

Cyclone:

Rectangular, square symmatric shapes are more efficient to withstand the wind forces. Structural strength is been taken care of in the foundation, wall and roof from lateral loads through wind actions. We have used deep foundations as the soil is clayey.

Air and Noise pollution:

Frontage provided as per the development control rules which itself creates a buffer between the road and the building. Materials with good Sound Transmission Class (above 40 dB) is used to ensure less transmission from outdoor to the indoor and inbetween the spaces in the indoor. The existing trees act as a barrier for air and noise pollution in the front.

Technological change:

The design includes adaptable spaces which adhere to change in future functionality and number of occupants. Parking facilities provided for electronic vehicle. Aeroponic system provided in the terrace addresses food resilience.

Engineering and operations

- Materials with low embodied carbon and low self-weight is used for construction.
- MEP systems has been rightly sized keeping in mind the potential increase in cooling demand due to climate change or increase in number of occupants.

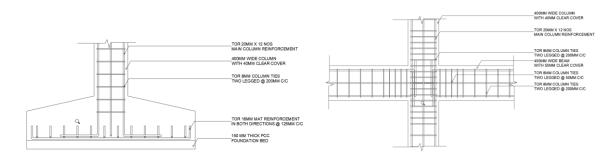
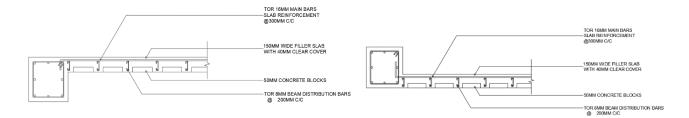
Figure 21: Model of Structural Systems

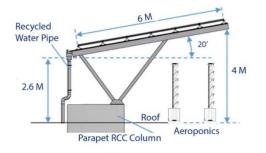
The proposed construction materials are

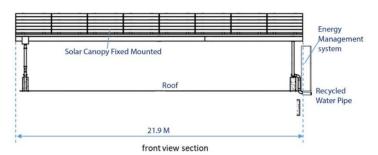
- Foundation, Beams and Columns are constructed using 20% recycled aggregate concrete to increase the usage of salvage materials.
- The foundations have been custom sized in order to use only the required amount of concrete and reinforcement usage.
- Filler slabs have been used with Concrete blocks of 200*200*50mm to reduce the concrete usage.
- Agri Bio panels have been used as interior partition walls for cabin spaces to reduce the load on the framed structure.
- Hollow Clay blocks have been used as an exterior wall material. Hollow clay blocks have been selected because of its low embodied energy and low weight.
- Low emissivity double glazed glass for glazing.

Structural Sections

All the structural layouts has been attached in the appendix

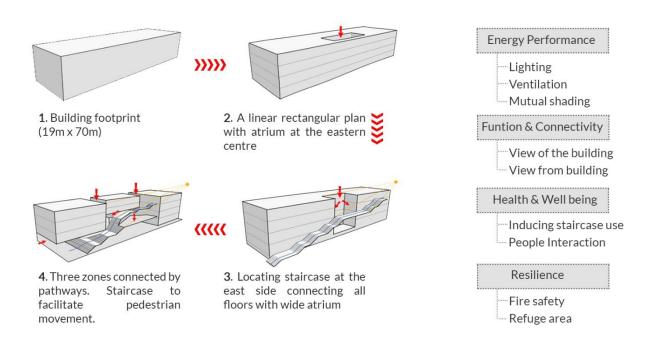

Figure 22: Foundation Section and Column, Beam Section with Reinforcement data



Waste Generation Details								
Waste Sources	Colour of Bin	No. of Bins	Category	Composition	Quantity (kg/yr)	Treatment / Disposal Method		
Black Water Sludge	-	12	Bio-degradable	U	544	This is turned into compost through manual		
Food & Organic Waste (Wet Waste)	Brown	14		40% of total		composting using pits. The stabilised material is used as fertiliser for the landscape on site.		
Domestic Hazard Waste - Toilets	Yellow	10	Incineration		5261.6	Sent to municipality incineration plant		
Dry Waste - Cardboard, Paper etc	Blue	35	Recyclable					
Dry Waste - Plastic Waste	Red	35		60% of total solid waste generated	7892.5	Sent for recycling through approved recycler		
Metals - Cans, Tetrapacks etc	Green	4						
E-Waste	Black	4						
Total Yearly Waste Generation		As per GRIHA v.19		As per NBC	13154.1			

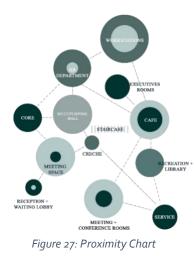
Table 13: Waste Generation Details

The air conditioning tonnage is calculated to be 157.76 tons. The calculation table has been attached in the appendix.



Architectural Design

Design concept with one stair element connecting all the floors enables pedestrian circulation. Staircase is organic which makes people use it rather than the lifts. Good ratio of solids and voids helps in daylighting, natural ventilation, and views.

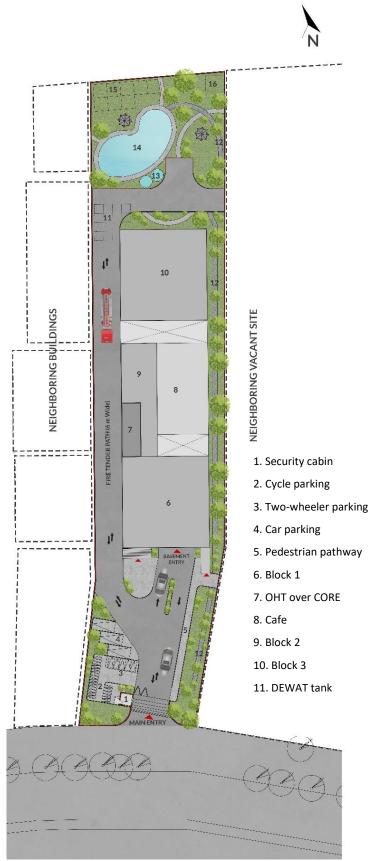


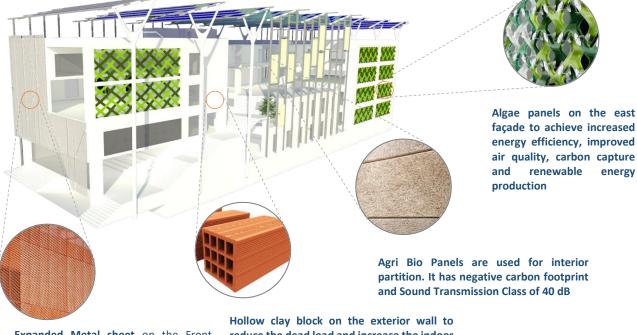
The design began with the proximity mapping followed by zoning. The living stair will connect to all

the floors. The living stairs will add to the aesthetics of the building, create on site views, enhance lighting, induce users to use the staircase, lower the solar radiation ingress and acts as emergency stair also.

Conceptual views were made to bring in more clarity into the design. The backside of the site has the DEWAT system and the walkthrough pathway which has a very good onsite view. The northern side of the building is treated with slanting wall to facilitate the occupants have a view on site and view towards the lake.

The southern part of the site has the main entry. The façade is treated with glazing units as primary element. Expanded metal cladding is done to facilitate shading and daylighting together. The double floor high space at the South eastern side has landscape and it is open. The eastern side has the living staircase running through the periphery of the façade. It has the algae panels for improved energy efficiency and shading.




Figure 28: Building Site Plan

1) Reception 2) Waiting lobby 3) Back office 4) IBMS room 5) Vendor discussion 6) Lift 7) Staircase 8) Hub room 9) Toilet 10) Creech 11) Multipurpose hall 12) Workstations 13) Meeting room 14) Conference room 14a) AV room 15) Manager room 16) Reprography 17) Library 18) Café 19) Recreation hall 20) Balcony 21) Board room 22) CEO room 23) Assistant room 24) Executives room 25) Living staircase

Expanded Metal sheet on the Front façade for the purpose of providing shade and light together

reduce the dead load and increase the indoor thermal comfort.

AFFORDABILITY

Project cost data: Base case vs proposed case

The total estimate of proposed cased is higher than base case estimate due to addition of eco-friendly materials and interventions in design, energy and water.

S.No.	Particulars	Definition	Baseline Estimate (Project Partner / SOR basis)			Proposed Design Estimate		
			Amount (Million INR)	%	Amount (INR per sqm)		%	Amount (INR per sqm)
1	Land	Cost of land purchased or leased by the Project Partner	0.00	0.0%	-	0.00	0.0%	
2	Civil Works	Refer Item A, Civil works in Cost of construction worksheet	6310.89	27.4%	78,88,607	5253.48	19.9%	65,66,854
3	Internal Works	Refer Item B, Civil works in Cost of construction worksheet	4589.21	19.9%	57,36,507	4696.57	17.8%	58,70,708
4	MEP Services	ces Refer Item C, Civil works in Cost of construction worksheet		1.4%	3,90,835	0.00	0.0%	-
5	Equipment & Furnishing	hing Refer Item D, Civil works in Cost of construction worksheet		22.9%	66,13,683	5290.93	20.0%	66,13,657
6	Landscape & Site Development	Refer Item E, Civil works in Cost of construction worksheet	4420.09	19.2%	55,25,115	8676.90	32.8%	1,08,46,125
7	Contingency	Amount added to the total estimate for incidental and miscellaneous expenses.	2092.38	9.1%	26,15,475	2475.18	9.4%	30,93,972
	TOTAL HARD COST		23,016.2	100%	2,87,70,222		100%	3,29,91,316
8	Pre Operative Expenses	Cost of Permits, Licenses, Market research, Advertising etc	10.00	0.0%	12,500	10.00	0.0%	12,500
9	Consultants	Consultant fees on a typical Project	10.00	0.0%	12,500	10.00	0.0%	12,500
10	Interest During Construction	Interest paid on loans related to the project during construction	20.25	0.1%	25,318	11.72	0.1%	14,653
	TOTAL SOFT COST		40.3	0%	50,318	31.7	0%	39,653
	TOTAL PROJECT COST		23,056.4	100%	2,88,20,539	26,424.8	100%	3,30,30,968

CAPEX:

The capital expenses for base case is less than proposed case as the installation of algae panels, PV panels, aeroponics system, water saving fixtures and energy efficient equipment's are higher.

OPEX:

The operational expenses for proposed case is less than base case as above mentioned interventions consistently reduces the post operational expenses and in turn adds revenue to the building that can balance the maintenance and replacement cost. The use of solar panels on the terrace and algae panels on the facade generates onsite renewable energy that reduces the operational cost further.

COST REDUCTION STRATEGIES:

- Use of porotherm bricks reduced the plastering, painting material and labour cost by 25% compared to that of conventional bricks.
- Using recycled concrete in place of conventional concrete reduces cost by 2%
- Installing fire hydrant system saves money on sprinkler system.
- Use of energy-efficient materials and strategies will achieve payback period within 3-5 years.
- Sending additional electricity to grid earns 5% of revenue.

LIFE CYCLE COST ANALYSIS:

LCC for the proposed case is less compared to base case as it is done for period of 10 years. As mentioned capex is high for a proposed case but the other expenses for annual maintenance, replacement is considerably reduced due to use of high efficiency equipment's recommended for the proposed case.

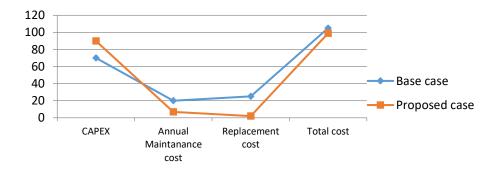


Figure 29: Life Cycle Cost Comparison

Health and Wellbeing

The health and comfort of the occupants have become an inevitable part of the building's design and construction. Currently, there are many standards and benchmarks available for health considerations in buildings from various organizations. WELL standards have emerged as one of the leading standards for the health and comfort of building users worldwide. WELL, v2, the updated version of standards that considers 10 different parameters to ensure the health and well-being of the occupants, was released in 2019. Factors like ventilation, lighting, and comfort become a basic need as all green certifications have them as prerequisites in their rating systems. So, we are getting a step ahead and focusing more on psychological comfort and productivity.

Role of design in health and well-being

Biophilic design:

The staircase design plays a major role in the health and well-being of the building's occupants. The staircase design encourages users to use it, increasing their fitness. This was achieved by making the stair appear more predominant and aesthetic (biophilic design), and recreational spaces like cafés were added in between and easily accessed through the stairs.

Cafe Blan

Vista: Workstations with a functional layout have access to outside

views (view towards the lake on the east) and open planning, which allows the user to move freely. And the workstations have green zones to make the indoor space more alive.

Barrier-free environment: The design of the building makes provision for elderly and differently abled people.(Refer to the floor plans)

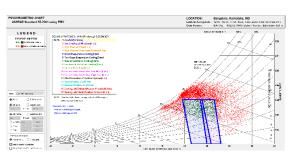
- Ramp access (at entrance)
- Lift/Elevator (to access different floors)
- Handrail design (guiding rails)
- Toilet for the differently abled (with wheelchair access)

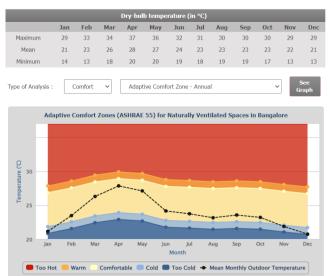
User comfort:

- Ergonomic furniture and layout
- Lighting: CRI > 90, reduced flicker rate
- Sound: 40m buffer for road (includes trees)
- Material: The materials used in the project are low VOC, mercury, and lead.

Social:

The staircase increases interaction space as it accesses all recreational and other spaces, and it has been designed with more width, which acts as a social corridor. And the design includes many recreational zones like a café, gym, library, etc. A creche area for workers kids and a feeding area for feeding mothers have been provided.


Bangalore


Latitude(°N) :

12.96

Thermal comfort:

The Bangalore comfort chart from CARBSE tools shows it has more comfort hours throughout the year except February, March, April, and May. An annual cooling load of 17.5% of hours is needed to achieve thermal comfort, and naturally ventilated spaces enjoy cross ventilation to regulate indoor temperature.

Longitude(°E) :

77.50

Altitude(m) :

Figure 30: Thermal Comfort Data

13 (based on WELL v2). The building and site are smoke-free zones. Live monitoring of pollutants like

Indoor air quality _____

Deliverable 4 – Final Design Report

Naturally ventilated spaces have been designed in such a way to achieve cross-ventilation. Algae panels used in the façade not only produce energy; they also absorb CO2 and purify the air. Mechanically ventilated HVAC systems were combined with filters like carbon, UVGI, HEPA, and MERV

CO2, PM2.5, and PM10 will be constantly monitored and displayed in common areas. Air purifiers will be installed at the entrance.

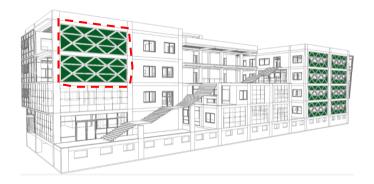
Indoor plants: Plants like chrysanthemums, spathipyllum, ficus elastic, etc. have been added. These plants are known for their air-purifying capabilities.

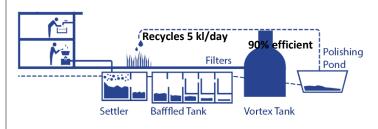
Water _____ 🕗

Drinking water: the occupants will be provided with UV-RO purified water, and dispensers have been provided at a rate of 1 per 100m.

Recycled water: The recycling of wastewater involves a DEWAT system with two vortices and additional UGVI and activated carbon. A sediment filter is provided, which makes the wastewater 90% pure compared to drinking water. Thus, using this recycled water for indoor plants doesn't affect the occupant's health.

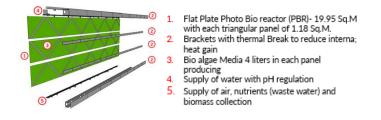
Water-use spaces like toilets and potable water dispensers remain moisture-resistant, which resists microbial generation around them.

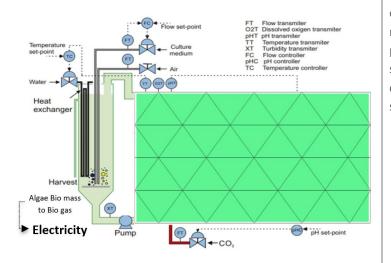

Innovation


Agrocorp office building has been designed as an interactive system which takes micro to macro level variable into consideration. The team intends to focus on providing energy and water efficient system to its occupants and owner. Therefore, a system has been proposed which focuses on enhancing the efficiency as well as income generating opportunity which in turn benefits the ROI.

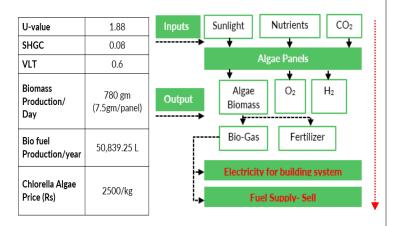
WATER

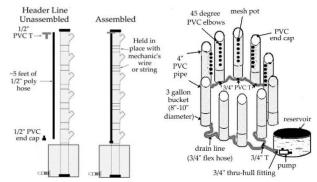
Vortex DEWATS & Aeroponic Tower Garden


The algal facade system consists of two glazing systems and an algae bioreactor system. This cutting-edge algal facade offers sufficient thermal and structural performance, good daylight transmission, and shading capacity. It enhances indoor air quality by generating O2 and absorbing CO2 as a by-product of algae's photosynthesis. **Vortex DEWATS**. It uses minimal space, requires low energy input, and quickly provides oxygen saturation in the wastewater for complete odour control without any mechanical and chemical processes and no complex maintenance procedures.



Horizontal flow System- Wastewater is fed in at the inlet and flow slowly through the porous substrate under the surface of the bed in a more or less horizontal path until it reaches the outlet zone.



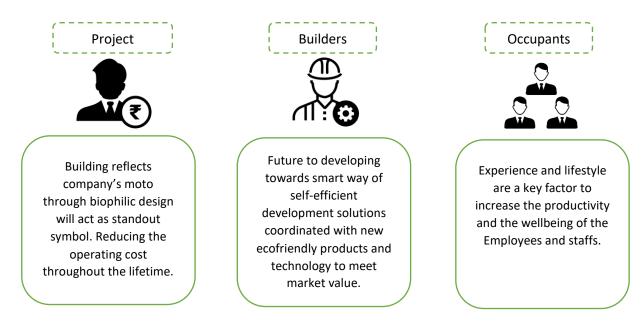

Flat-plate reactors are characterized by a high surface-to volume ratio, which leads to the best photosynthetic efficiencies observed for any photobioreactor.

Proposed System functioning and details-

Aeroponics is the practice of growing plants in an air or mist environment without the use of any substrate. That is, the plant roots are suspended in the air and are misted or sprayed periodically with a nutrient solution or aerosol of nutrient solution. This system requires about 5 I/day for 60 towers covering a total area of 90 Sq.M. This demand is met by the onsite recycled grey water.

It is a farming technique that involves growing crops in layers that are piled vertically. It is carried out in a controlled environment utilizing soilless growing method.

Area covered	90 Sq.M
Nominal Yield	40 Tons/acre
(Tomato)	(8.9 kg/Sq.M)
Yield through	
hydroponics	1035 kg (11.5
(30% more	kg/Sq.M)
than nominal)	



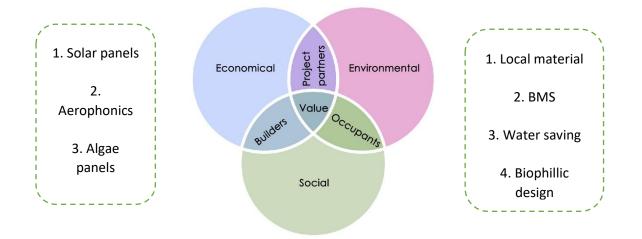
Value Proposition

Nourishing sustainable developments

Net -zero office building for Agro corp in Bangalore delivering the package of healthy environment, human well-being, productive economy. Functional efficiency, Effective utilization of spaces are ensured in the design. Sustainable design solutions are provided to achieve net-zero energy, best environmental quality, net zero water.

Economic Benefits

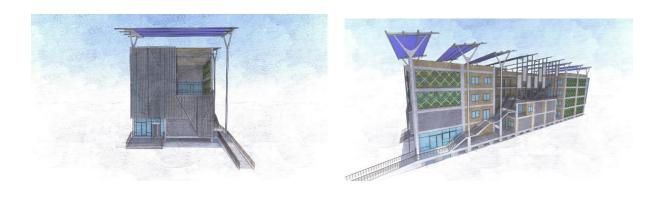
- Building design (Orientation, WWR, Algae panels) evolved from climate analysis results utilize the daylight and solar radiation helps in energy efficiency. (Refer: Innovation and design sheets)
- Renewable energy generated (217500kwh) through solar panels are sufficient to meet the daily energy (184271.34kwh) requirement. (Refer: Energy performance sheets)
- Reducing construction cost (up to 20%) by using filler slab and hollow blocks and by reducing transportation cost.
- Operating costs are reduced by energy efficient Equipment and lighting fixture, efficient mechanical ventilation (HVAC)
- Our sustainable solutions do not compromise structural stability, hence increase the property value. (Source: https://ijcsm.springeropen.com/articles/10.1007/s40069-015-0100-0)
- Urban farming through Aeroponics, which will yield vegetation (81kg of tomato) and create a positive impact towards the environment. (Refer: Innovation).


Environmental Benefits

- Sustainable and locally available materials such as (Hollow clay blocks, AgriBio panels) reduce carbon emission up to 40%. (Refer: embodied carbon)
- Some of the existing trees are retained and for landscape areas native species for landscape areas.
- Around 1000kl of water is saved per year using efficient water treatment plants, and efficient plumbing fixtures. (Refer: Water Performance)
- Building Automation including sensors to reduce energy consumption and to maintain comfort and air quality.

Social Benefits

- Aesthetics of the enhanced with integrated biophilic design creates productive environment.
- Flexibility of spaces like open plan, multipurpose area adds to the utility value.
- Quality of life (fitness to the occupants) improves by creating active spaces such as stairways along the building and horizontal pathways. (Refer: Health and wellbeing)
- Physiological benefits for the employees including enhancing their productivity and mental health towards perceived wellbeing by creating the green and active spaces.



*Reach out to integrated solutions *

Building Renders

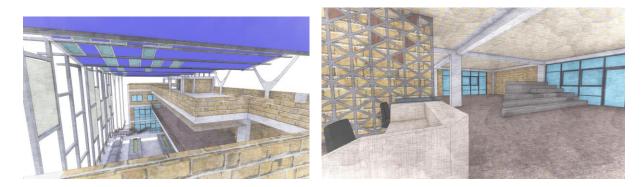


Figure 31: Building Renders

Appendix

Appendix 1 - Detailed building area program

No	Space	occupants	Area (sqm)
	BASEMENT FLOOR		1334
1	ELECTRICAL ROOM		45
2	PARKING AREA		1144
			1189
	GROUNDFLOOR		
1	RECEPTION	2	21.9
2	WAITING LOBBY	30	64
3	BACK OFFICE	4	14.82
4	IBMS & CONTROL ROOM	6	33.28
5	VENDOR DISCUSSION	10	101.5
6	LANDSCAPE 1		51.75
7	CRECHE		88
8	MULTIPURPOSE HALL		158.13
9	LANDSCAPE 2		96.5
10	MEETING ROOM 1	5	18.52
11	MEETING ROOM 2	5	18.52
12	AV ROOM		71.11
13	HR MANAGER		23.16
14	WORK STATION		230.97
			992.16

Table 15: Area Statement Ground Floor

No	Space	occupants	Area (sqm)
	FIRST FLOOR		
15	MANAGER ROOM 1	1	17.66
16	MANAGER ROOM 2	1	17.66
17	MANAGER ROOM 3	1	17.66
18	WORKSTATIONS		123
19	CONFERENCE ROOM 1		59.56
20	CONFERENCE ROOM 2		59.56
21	MEETING ROOM 1		23.13
22	MEETING ROOM 2		23.13
23	LANDSCAPE		50.8
24	WORKSTATION		322.66
25	MANAGER ROOM 1		17.66
26	MANAGER ROOM 2		17.66
27	MANAGER ROOM 3		17.66
			767.8

	SECOND FLOOR	
28	LANDSCAPE	77.75
29	LIBRARY	220
30	CAFÉ	194
31	RECREATION	387.46
		879.21
	THIRD FLOOR	
32	BOARD ROOM	42.32
33	CEO ROOM	30.8
34	ASST.ROOM	14.05
35	CFO ROOM	18
36	CFO ROOM	18
37	TOILET 1	6.54
38	TOILET 2	6.07
39	BALCONY	94.1
40	MANAGER ROOM 1	17.66
41	MANAGER ROOM 2	17.66
42	MANAGER ROOM 3	17.66
43	WORKSTATIONS	343.23
		626.09

Table 16: Area Statement First, Second, Third Floor

No	Space	No of Space	Area (sqm)
	SERVICE CORE		
44	M. TOILET	4*31	124
45	H. TOILET		
46	W. TOILET		
47	HUB ROOM	4*19	76
48	LIFT 1	5*11	55
49	LIFT 2		
50	SERVICE STAIR	5*26	130
51	CORRIDOR (ALL FLOORS INC)		332.35
52	OUTDOOR STAIRCASE		105.81
			823.16
	BASEMENT FLOOR AREA		1368
	GROUND FLOOR AREA		1368
	FIRST FLOOR AREA		1085
	SECOND FLOOR AREA		1140
	THIRD FLOOR AREA		1022

Table 17: Area Statement of Service Core

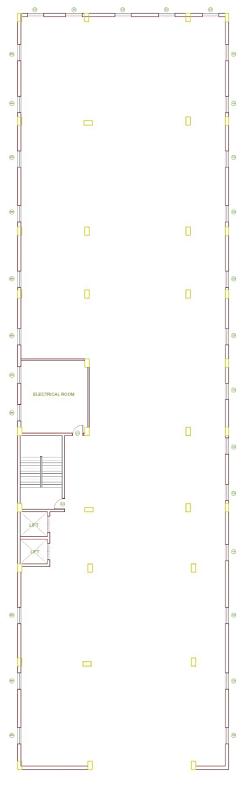


Figure 32: Basement Floor Plan

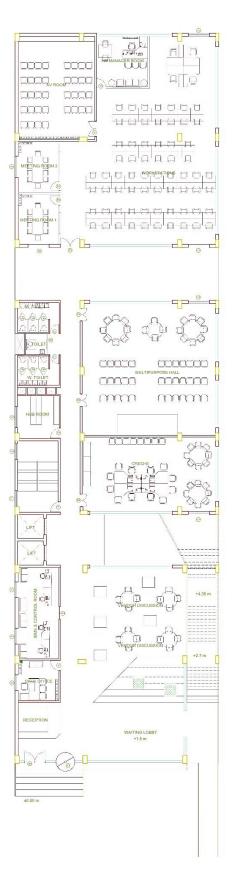


Figure 33: Ground Floor Plan

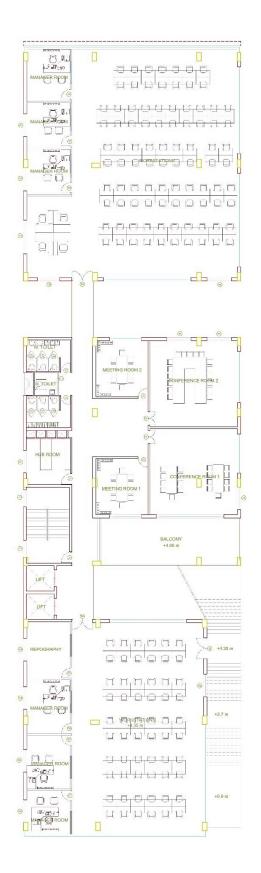


Figure 34: First Floor Plan

Figure 35: Second Floor Plan

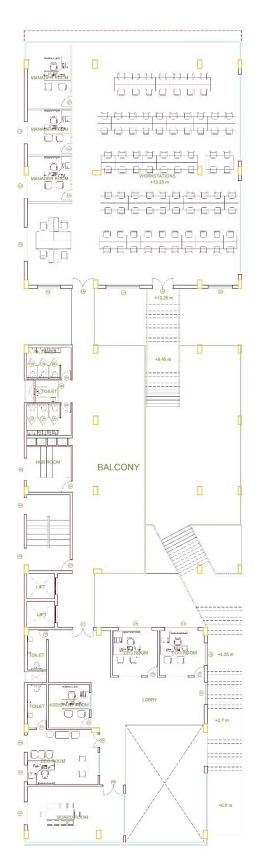
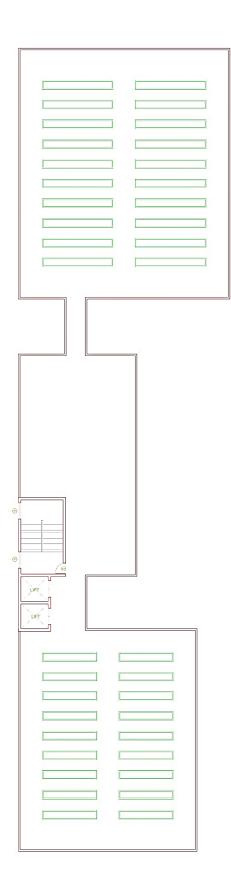



Figure 36: Third Floor Plan

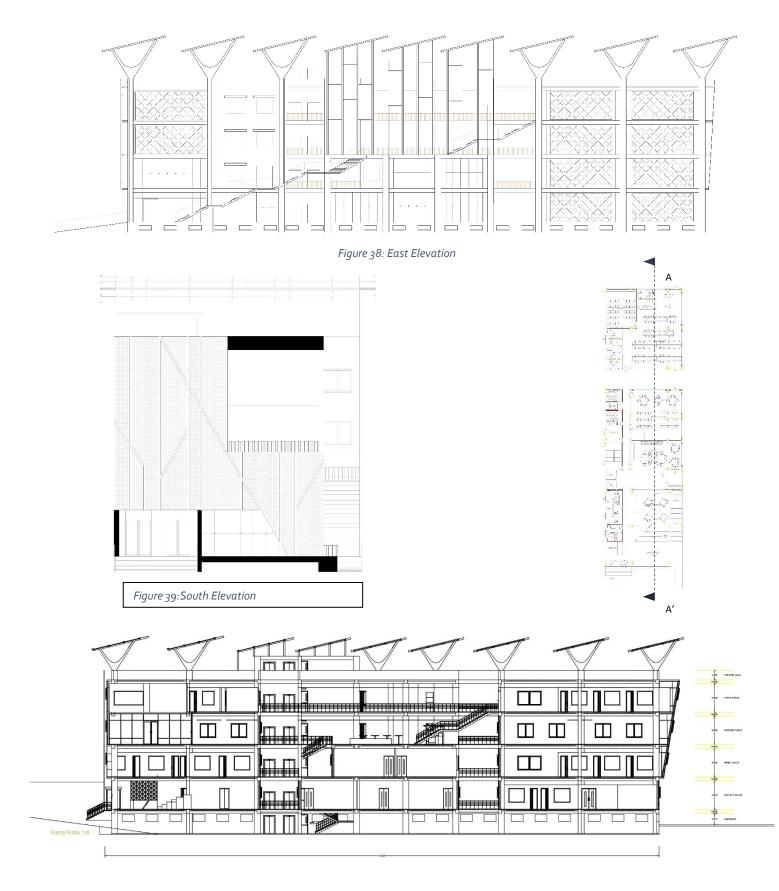
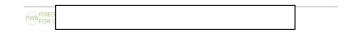



Figure 40: Section AA'

(D1) AGROBIO PANEL DOOR	D5 AGROBIO PANEL DOOR	(04) AGROBIO PANEL DOOR WITH GLASS PANELS	D1) FIRE RATED STEEL DOOR	SD UPVC GLASS PANEL SLIDING DOOR	B AGROBIO PANEL DOOR FOR TOILET
€ 17 ⁴⁴ 7	₹ (¹⁰ ··· ;	$\left(\begin{array}{c} 10^{-10} \\ 10^{-10} \\ 10^{-1} \\ 10^{$)	2 22 1 2	2 3 3
			8 8 5 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		

19

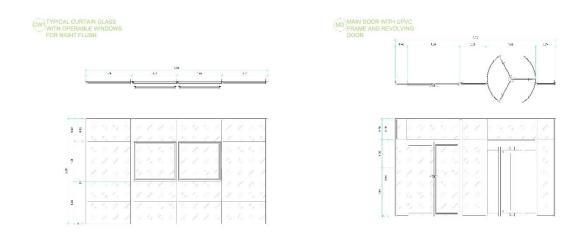


Figure 41:Section AA'

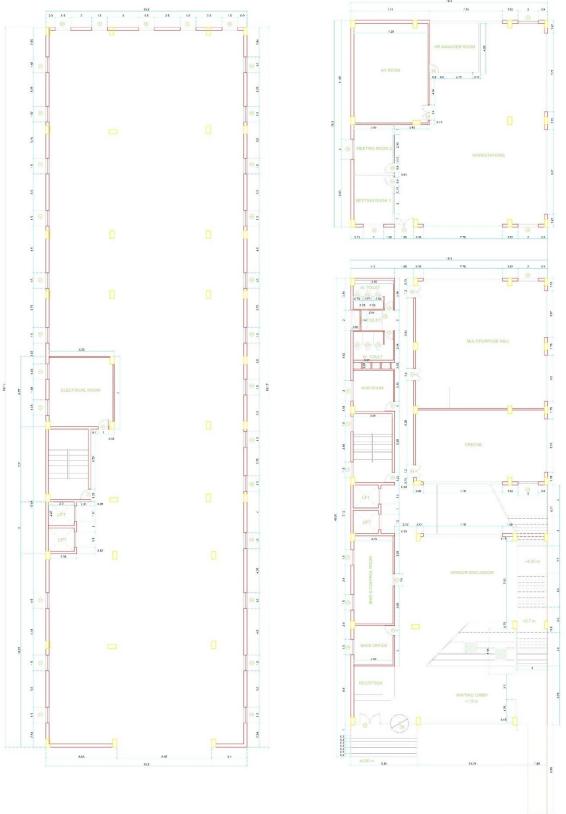


Figure 42: Measurement Drawing

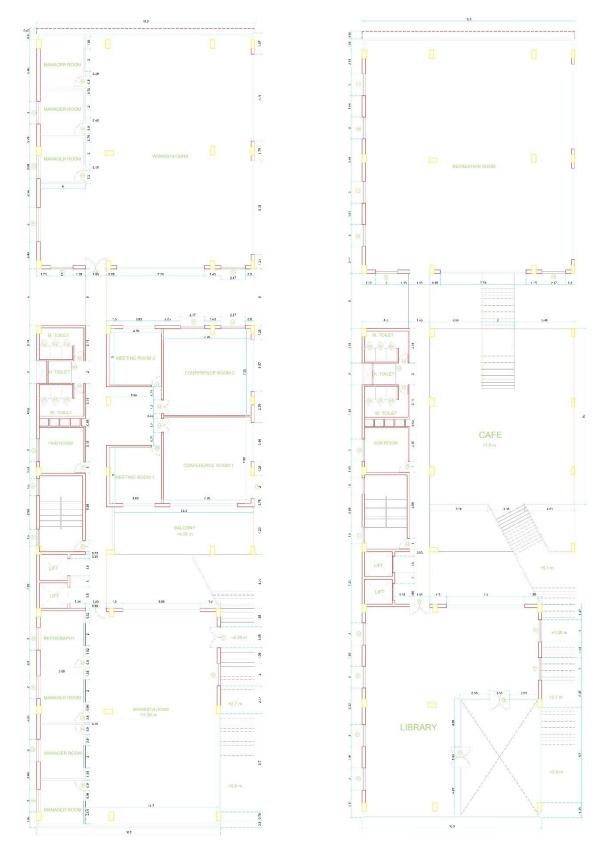


Figure 43: Measurement Drawing

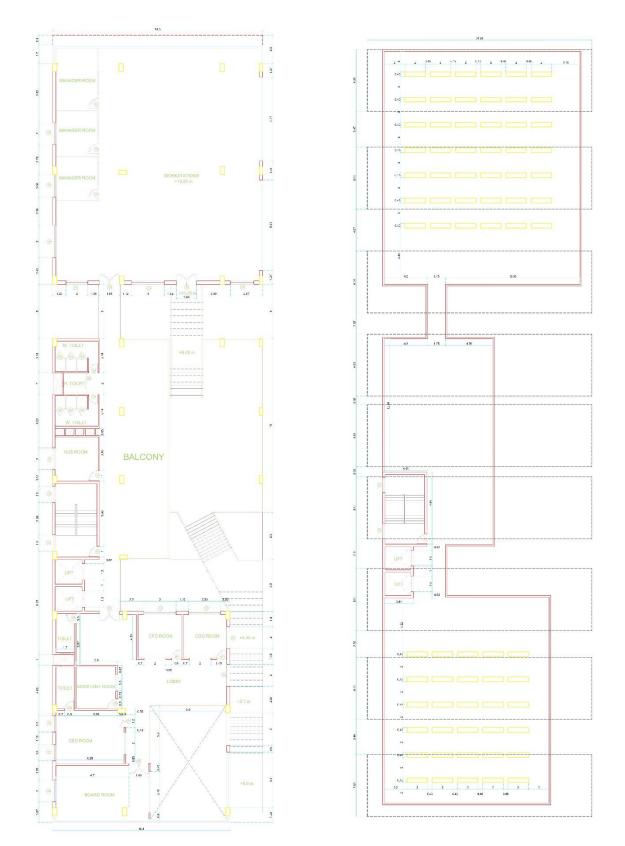
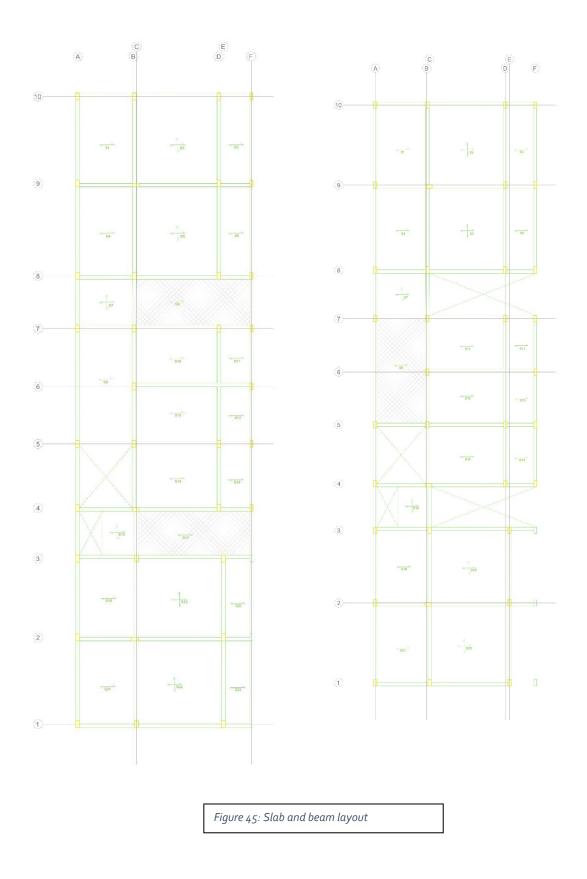
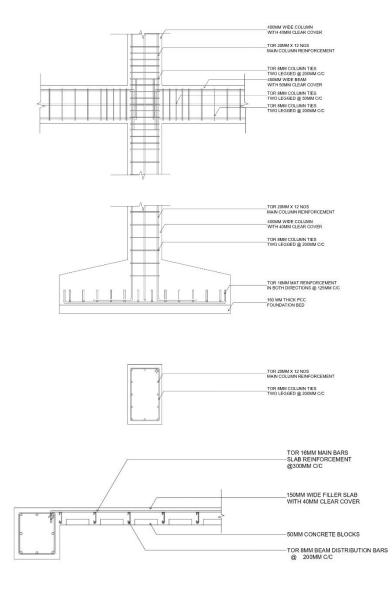



Figure 44: Measurement Drawing



Appendix 3 – Engineering drawings

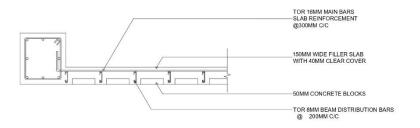


Figure 46: Structural Sections

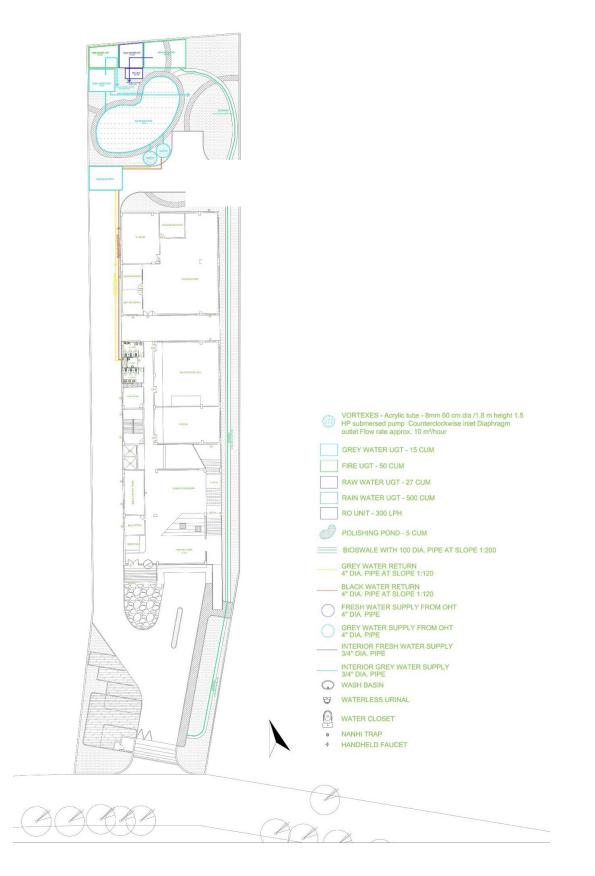


Figure 47: Plumbing Layout

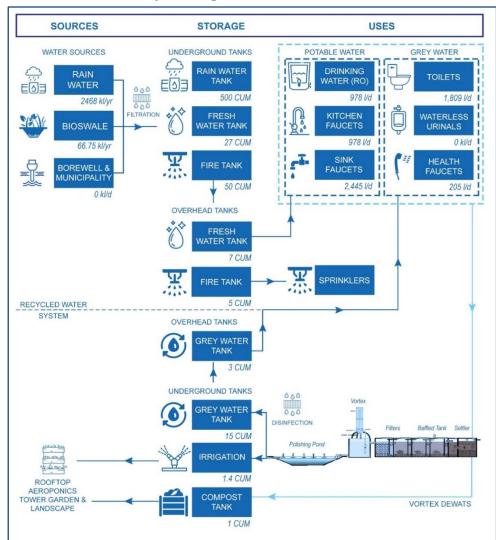
Appendix 4 – Energy simulation inputs

				Base Case (Building As Usual)	Iding As Ust	ual)			Proposed Case- III	se III
	Items	0,	SI	B		-	SI		d	
		Units	Value	Units	Value	Comment	Units	Value	Units Value	Je Comment
	Wall Assembly (External)		2.18		0.38			0.60		0.11 Hollow Clay blocks
	Wall Assembly (Internal) Roof Assembly	W/m2.K	2.00	2.00 btu/h.ft2.F 1.50	0.35		W/m2.K	0.50	0.50 btu/h.ft2.F 0.80	0.09 Agribio Biopanel 0.14 AAC filler slab
Envelope	Glass Assembly_1 Glass Assembly_2		5.70		1.00	KG BC		1.67		0.33
	Glass Assembly									DGU
	Glass 5HGC_1	ratio	0.48	0.48 ratio	0.48		ratio	0.27 ratio		0.27 VIIIII US INCULIAI OF 1.12 VIIII OLI 54P 7 VIIIII US
	olass strac_z Shading Coefficient	ratio	0.56	0.56 ratio	0.56		ratio	0.31 ratio		0.31 Algae Photo bioreactor Panels
	Glass VLT_1. Glass VLT_2	8	66.00 %	×	66.00		×	0.60 45.00	0 4	66.00 45.00
Lighting Power Density (Interior)	Discussion / Conference Discussion / Conferenced Breakout Area Waiting Jounge Lift Lobby/Jobby Lift Lobby/Jobby Altu, Mr. UPS, Battery, Server, Electrical room Store Altu, Mr. UPS, Battery, Server, Electrical room Stairesse Toilet Tatrity/Preparation area cruche Brectasion Chin / Mr. Carea Discussion / Conference	10	9.68 1.7.65 1.7.65 1.8.7.85	W/ft2	0.90 1.64 1.64 1.64	ASHRAE 90.17able 9.5.1 Building Area Nethod	Zm/W	5.00 7.50 7.85	0	LED Lighting Fraures LED Lighting Fraures Baylight:sancers south and Barfaged and below working station) as the trenched down working light swill be worked on Suscens were placed at a many from the wind own. In a way from the wind own. In stalled a programed occupancy sensor based on working hours 0.70 0.70
cuuprient, sower Density (Interior)	cuan to Trunce inclosed Left Lobby/Lobby Left Lobby/Lobby Reception AHU, MTC, UPS, Battery, Server, Electrical room Starrease Fartry/Preparation a rea Partry/Preparation a rea Recreation al	W/m2	13.67 13.67 13.67 13.67 0.00 0.00 13.67 14.74 14.74 13.67 13.67	W/ħ2		ktps://comnet.org/ites/defaut/file s/pdfs/150928_plug_loads_tsd_pdf	W/m2		21/12	1.27 A guide for high Performance Energy Efficient Buildings In India 1.27 1.37 0.67

HVAC Specs	System type	Dir	Packaged Air Conditioning (Direct Expansion)	Pag Pag	g (Direct	a coaged Air Conditionin https://www.daikinindia.com/produc g (Direct ts-services/roof-tops-ac/air-cooled-	Airl	Airbased cooling system		Night Flush	
	Set point		IMAC		IMAC	ro oftop-uatyq-series/air-cooled-		IMAC		An course uniter with united water pipes and IMAC AHU for air supply.	
	EER	kWh/kWh	3.36			roortop-r+±ua-uatyq-series	kWh/kWh	26.50		Energy Recover Ventilation	
	COP	COP	3.00 EIR	EIR	0.33		COP	4.00 EIR		0.25 Airside Economizer	
	Fan Control	10	Constant	-	Constant			Variable	- Val	variable	
Occupant Density	IT Work Space/ Open Plan Office		60.00		16.67			60.00		16.67	1
	Discussion / Conference		50.00		20.00			50.00	2	20.00	
	Cabin / Office enclosed		5.00		200.00			5.00	20	200.00	
	Breakout Area / Waiting lounge		25.00		40.00			25.00	4	40.00	
	Lift Lobby/Lobby				5						
	Reception		30.00		33.33			30.00	m	33.33	
	Store	person per 100		area (ft2)	1	ASHDAF 62 1 / NRC 2016	person per 100		area (ft2) per	Same as Race race	
	AHU, NTC, UPS, Battery, Server, Electrical room	m2	2.00	2.00 per person	500.00		m2	2.00	2.00 person 50	200.00	
	Staircase				ľ			1			
	Toilet		10.00		100.00			10.00	10	100.00	
	Libraray										
	Pantry/Preparation area		20.00		50.00			20.00	5	50.00	
	cruche		70.00		14.29			70.00		14.29	
	Recreational		50.00		20.00			50.00		20.00	
Activity	Stan ding-Relaxed, Seated-Filing	W/person	126.00	126.00 btu/h per person	450.00	450.00 ASHRAE 55 (for all occupant spaces)	W/person	126.00	126.00 btu/h per 45 person	450.00 Same as Base case	-
	IT Work Space/ Open Plan Office/ Training		3.50		7.00			3.50		7.00	-
	Discussion / Conference / Cabin		3.10		6.00			3.10		6.00	
Warmstraten	Breakout Area / Waiting lounge/ Lift Lobby/Reception		3.50		7.00	and the second second second in the second		3.50		7.00	
Renuisement	Reception	1/5 per person	3.50	3.50 cfm/ person	7.00	7.00 ASHRAE 62.1	I/s per person	3.50	3.50 cfm/person	7.00 Same as Base case	
	Recreation		4.00		8.00			4.00		8.00	
	NTC, Server, Battery		17.50		35.00			17.50	m	35.00	
	Cafeteria/ Dining		3.50		7.00			3.50		7.00	

Figure 48: Energy Simulation Inputs

https://docs.google.com/spreadsheets/d/1b71DWn_FJRsKrZ3ZJ4xm3D5EaP4I41gL/edit?usp=sharing &ouid=108340848250037805143&rtpof=true&sd=true



Appendix 5: Energy Output table

File has been linked from drive:

https://drive.google.com/file/d/14izgAKHs4l5qez0aPcyoZw8Jy2sORxQT/view?usp=sharing

Appendix 6 – Net-zero water-cycle design and calculations

Figure 49: Water Schematic Drawings

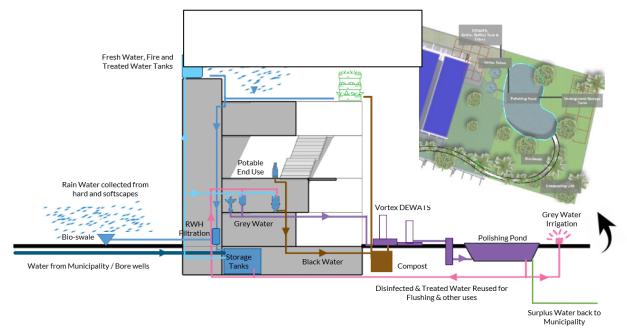


Figure 50: Schematic Drawing of water performance

S.No.	Particulars	Definition	Baseline Estimate (Project Partner SOR basis)	timate (Proje SOR basis)	ect Partner /	Propo	Proposed Design Estimate	Estimate
			Amount (Million INR)	%	Amount (INR per sqm)	Amount (Million INR)	%	Amount (INR per sqm)
-	Land	Cost of land purchased or leased by the Project Partner	00.00	0.0%		00.00	0.0%	
2	Civil Works	Refer Item A, Civil works in Cost of construction worksheet	6464.51	27.8%	80,80,632	5253.48	19.9%	65,66,854
- 	Internal Works	Refer Item B, Civil works in Cost of construction worksheet	4589.21	19.8%	57,36,507	4696.57	17.8%	58,70,708
4	MEP Services	Refer Item C, Civil works in Cost of construction worksheet	312.67	1.3%	3,90,835	00.0	0.0%	1
5	Equipment & Furnishing	Refer Item D, Civil works in Cost of construction worksheet	5290.95	22.8%	66,13,683	5290.93	20.0%	66,13,657
9	Landscape & Site Development	Refer Item E, Civil works in Cost of construction worksheet	4420.09	19.0%	55,25,115	8676.90	32.8%	1,08,46,125
r		Amount added to the total estimate for incidental and						
_	Contingency	miscellaneous expenses.	2107.74	9.1%	26,34,677	2475.18	9.4%	30,93,972
	TOTAL HARD COST		23,185.2	100%	######	26,393.1	100%	3,29,91,316
8	Pre Operative Expenses	Cost of Permits, Licenses, Market research, Advertising etc	10.00	0.0%	12,500	10.00	0.0%	12,500
6	Consultants	Consultant fees on a typical Project	10.00	0.0%	12,500	10.00	0.0%	12,500
10	10 Interest During Construction	Interest paid on loans related to the project during construction	20.25	0.1%	25,318	11.72	0.1%	14,653
	TOTAL SOFT COST		40.3	%0	50,318	31.7	%0	39,653
	TOTAL PROJECT COST		23,225.4	100%	######	26,424.8	100%	3,30,30,968

Table 18: Estimate Summary

Appendix 8 – Embodied Carbon calculations

			Manufaction to complian to cite	Cumulan to nite				Memory to complete Strend for the city	Cumulian to nite	
1	Structures	Material Emission (kg - CO2 e)	Transportation 1 Emission (kg -CO2 e)	Transportation 2 Emission (kg -CO2 e)	Overall Emission	Structures	Material Emission (kg - CO2 e)	Transportation 1 Emission (kg -CO2 e)	Transportation 2 Emission (kg - CO2 e)	Overall Emission
	Steel reinforcement (stee	756R19 R984	1145 487598	47 97375155		Steel reinforcement (stee	214016 5R2	954 5688318	3000050 05	
tures Summary	Cement (ordinary Portlar		195 R050714	43 37647447		Cement (ordinary Portlar				
iction of 18.3% of	M-sand		90.20671251	801.8374446		Aggregate (mixed gravel/	4			
nission is seen in	Aggregate (mixed gravel/		0.067068188	0.596161669		Recycled Aggregate Conc				
oposed case			1431.56145	893.7333323	504952.7307		8712.	72.16537001	•	
							410661.7422			412561.6944
2	Floors	Material Emission (kg - CO2 e)	Transportation 1 Emission (kg -CO2 e)	Transportation 2 Emission (kg -CO2 e)	Overall Emission	Floors	Material Emission (kg - CO2 e)	Transportation 1 Emission (kg -CO2 e)	Transportation 2 Emission (kg - CO2 e)	Overall Emission
										-
	Steel reinforcement (stee	113134.2358	504.6077003	21.11113848		Steel reinforcement (stee	94278.5298	420.5064169	17.5926154	
ore Summary	Cement (or an ary Por uar		2000123330	200000014		Cement (or amary Portial Armonto (mixed armol/				
UIS JUILINIALY	Aggregate (mixeu gravei) M-sand		0.048167082	2C0CUCE.C2C		Aggregate (mixeu gravei) M-sand	a			
emission is seen	Vitrified ceramic floor ti	69	363.0160789	28.60126682		AAC	13223.275			
proposed case	Cement (ordinary Portlar		683.0600417	683.0600417		Granite	84308.499		8.04556912	
	M-sand		406.2339506	406.2339506		Cement (ordinary Portlar				
		1272824.708	2178.594723	1506.424896	1276509.728	M-sand	49042.32804	10000 101		
							189'06/2971	1652028/929	9816067.166	1263/69.23
m	Roof	Material Emission (kg - CO2 e)	Transportation 1 Emission (kg -CO2 e)	Transportation 2 Emission (kg-CO2 e)	Overall Emission	Roof	Material Emission (kg - CO2 e)	Transportation 1 Emission (kg -CO2 e)	Transportation 2 Emission (kg - CO2 e)	Overall Emission
	Steel reinforcement (stee	e 23181.34878	336.0609734	39.92953035		Steel reinforcement (stee	23181.34878	103.3947595	4.325699122	
of Summary	Cement (ordinary Portlar	rf 41490.40896	12.1583616	7.661287603		Cement (ordinary Portlar	ŝ		6.705755971	
rease of 16.6% of	Aggregate (mixed gravel/		0.029226831	0.774705861		Aggregate (mixed gravel/		0		_
nission is seen in	M-sand	826.38864	21.18945231	561.6617492		M-sand	723.31974	5.70618906	53.2577645	
oposed case.	Cement (or amary Foruar M-cand		2008/14T4.T	10 60052405		Cool-roof tile	2/2/16/2		7 030468351	
		20202121111	270 PC055 PC5	621 5267688	71467 00860					
			increase in		TODOC TOLT I					
							85357.92805		2	85728.56454
4	Fenestration	Material Emission (kg - CO2 e)	Transportation 1 Emission (kg -CO2 e)	Transportation 2 Emission (kg -CO2 e)	Overall Emission	Fenestration	Material Emission (kg - CO2 e)	Transportation 1 Emission (kg -CO2 e)	Transportation 2 Emission (kg - CO2 e)	Overall Emission
	Toughened glass	40716.39	45.345144	4.1566382		u-PVC window frame	5523.258	8.429577477	0.234620447	2
nerstration	Aluminum extruded profi		742.4513238	20.51704453		Toughened glass	306824.025		36.9926788	
Summary	u-PVC window trame	3311703 366	26.18892/99	1.6304/1968 26.3041547	3312543,655	Agribiopanel	304555.6186	1.90111/868 413.8871921	5PP(776,75	305006.7331
nission is seen in										
proposed case						Toughened glass			1.42	0
						Aluminum extruded profi	13/39/0			
							1383803.44	c/586/0'025	10.1/893408	1386203.099
2	Wall	Material Emission (kg - CO2 e)	Transportation 1 Emission (kg -CO2 e)	Transportation 2 Emission (kg -CO2 e)	Overall Emission	Wall	Material Emission (kg - CO2 e)	Transportation 1 Emission (kg -CO2 e)	Transportation 2 Emission (kg - CO2 e)	Overall Emission
lls Summary	Brick - High draught/zigz	517069.5987	320.2617865	301.0460793		Honeycomb brick	49717.5551	109.3685775		
reduction of	Cement (ordinary Portlar	119165.9156	99.32893742	22.00422639		AgriBiopanel	-57326.686	9.006525015		0
1422% of CO2	M-sand	4254.417209	313.2511634	313.2511634		Fiber cement board	1252.1974	20		0
ion is seen in the	Fiber cement board	1252.19904	20.23879424	0.72281408		BOF Steel	480.984 12251 17075	1.9920/54	A 76111063	
		100.001	40 10766'T			M-sand	697.648302			
		642223.1145	755.0727569	637.0242831	643615.2115	_	18172.86955			6 18393.12056

Table 19: Embodied Carbon calculation summary

		Manufacturers to distributers	T2 - Di	stributers to site
Material	Distace	Source	Distace	Source
Cement	64.1 Km	https://rb.gy/vpk8	14.2 Km	https://rb.gy/3rat
M-sand	6.3 Km	https://rb.gy/024pi	56 Km	https://rb.gy/9iqgh
Steel	980 Km	<u>t.ly/iEBo</u> Assumed upper	41 Km	<u>t.ly/DMu0</u>
Brick	20 Km	limit	18.8 Km	https://rb.gy/1j5x7
Hollow clay block	61.5 Km	https://rb.gy/3qfae	-	-
AgriBio Panel	666 Km	https://rb.gy/lq7ts	-	-
Fibre cement board	560 Km	t.ly/xknx	-	-
uPVC	310 Km	t.ly/CRUw	19.3 Km	t.ly/2ZDM
Aluminium	503 Km	https://rb.gy/gotb	13.9 Km	https://rb.gy/un3v
Glass	276 Km	https://rb.gy/nd6t	25.3 Km	https://rb.gy/yrzb
AAC block	560 Km	t.ly/xknx	-	-
Granite Tiles	58.6 Km	https://rb.gy/yfn84	2.5 Km	https://rb.gy/9dz6p
Vitrified tiles Recycled Aggregate	330 Km	https://rb.gy/qohfl	42.6 Km	https://rb.gy/2b563
Concrete	30 Km	Assumed radius of p	procurement fron	n the city
Cool Roof tiles	480km	https://rb.gy/l1ocz	23.5 Km	https://rb.gy/gjij7

Table 20: Material sources and their distance

Links to Working files -

Carbon calculation tool - <u>https://drive.google.com/file/d/1gKY1MQgJWtKZrOGnbpeqb29sO3WBQqCd/view?usp=sharing</u>

Material final weight - <u>https://docs.google.com/spreadsheets/d/15IIo1NWvCUI5f4THv7VbdiPv9-8IU0fu/edit?usp=sharing&ouid=108340848250037805143&rtpof=true&sd=true</u>

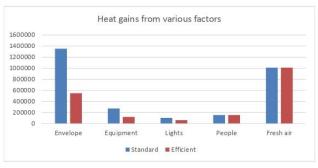
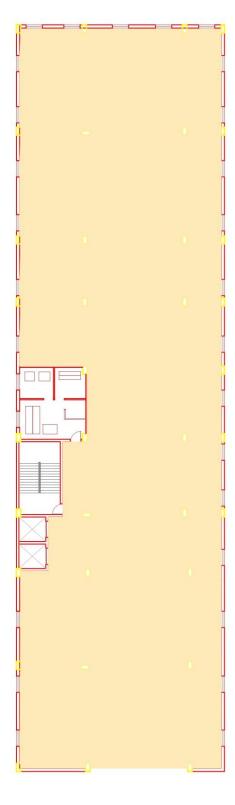
Material Volume calculation -

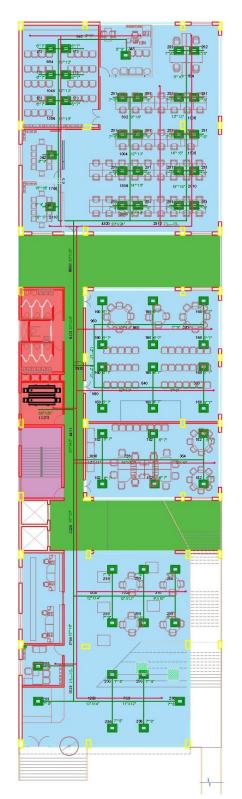
https://docs.google.com/spreadsheets/d/15IIo1NWvCUI5f4THv7VbdiPv9-8IU0fu/edit?usp=sharing&ouid=108340848250037805143&rtpof=true&sd=true

Appendix 9: Cooling Load Estimate

NTLE		Standard design				
LOCATION		BENGALURU				
ATITUDE		12.58°N				
SPACE		OFFICE				
AREA - Sq.ft	Conditioned area					
HEIGHT - ft		13.0				
	S	SOLAR GAIN - GL	ASS			
ltem	Direction	Area (ft²)	ΔT (°F)	Correction	SHGC	BTU / Hou
Glass	N	4313	39	1.3	0.69	145297
Glass	NE		11	1.3	0.52	0
Glass	E	1786	11	1.3	0.27	6639
Glass	E	2701.001	11	1.3	0.6	22317
Glass	S	4337	11	1.3	0.27	16127
Glass	SW		66	1.3	0.52	0
Glass	W	1282	158	1.3	0.27	68453
Glass	NW		158	1.3	0.52	0
Skylight	SOLAR & TRAI	SMISSION GAI	N-WALL & ROO	F		0
ltem	Direction	Area (ft ²)	ΔT (°F)	Correction	U-value	BTU / Hou
Wall	N	1572	4	fator 3	0.30	3301
Nall	NE	1572	10	3	0.30	0
Nall	E	3146	18	3	0.14	7268
Nall	SE	5140	18	3	0.14	0
Nall	S	1999	16	3	0.11	4178
Wall	SW	1555	14	3	0.14	0
Wall	W	5273	12	3	0.11	8701
Wall	NW		6	3	0.14	0
Roof		10550	32	3	0.19	70159
	TRANSMISSI	ON GAIN EXCEPT				
ltem		Area (ft ²)	ΔT (°F)		U-value	BTU / Hou
All Glass		14419	19.5	_	0.15	43399
Door		1107	19.5 14.5		0.09	1943 15957
Partition		12228				67889
Ceiling Floor		33443 33443	14.5 14.5	-	0.14	67889
1001	TNT	ERNAL SENSIBL			0.14	0/009
	Quantity	Unit rates				BTU / Hou
People	345	245				84525
Equip (W)	23410	3.41			1	79828
Lights (W)	18048	3.41			1	61544
Supply air fan gain	5%					38771
		TERNAL LATENT	HEAT	5 ¹⁰		
	Quantity	Unit rates				BTU / Hou
People	345	205 OUT SIDE AIR HI	FAT		-	70725
	Flow rate (CFM)		Convesion facto	or		BTU / Hou
Sensible	41219	19.5	1.08			868072
atent	41219	5.0	0.68			140145
				Room Sensi	ble heat	1682259
				tal Room Late		210870
				nd total heat,		1893128
				DITIONING TO		157.76
			AIR COND	THOMING IG	SIMMOL	13/./0

Envelope	1352989	549519	59.4%
Equipment	273384	118599	56.6%
Lights	102634	61544	40.0%
People	155250	155250	0.0%
Fresh air	1008217	1008217	0.0%


Figure 51: Cooling Load Calculations

Appendix 10: Mechanical and Electrical Layout

